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' ABSTRACT

This final project'report summarizes Zut/eearch in some basic problems

that make programming of flexible robotic assembly tasks difficult. 4rhwreportr
. "- /describes 6utoinitial efforts of implementing and using an interactive graphic off-

line programming system, called WORKMATE. ' he-lt described

in five technical papers,/include: 1-) ------

0 Locational Uncertainty. We develpea powerful and efficient
o O)2 n "thfor estimating compounded and reduced locational uncer- 4

tainties among sensors, robots, and objects based on their in- -'

dividual uncertain spatial relationships. This method is useful in 4

determining if ihe-patial errors in a planned task sequence will
fall within acceptable tolerances. ) -.-. .

Spatial Reasoning,, A fast algorithm, using VLSI clipping
hardware in our Silicon Oraphics IRIS graphics workstation, was
developed to determine if a simulated moving manipulator will
collide with modeled,*hree-dimensional objects during its motions.
The method is implemented in WORKMATE, which can graphi-
cally indicate the piece of the manipulator 'enetrating" any of
the objects at an animation speed of 4 to 6 picturese co - J 3) I 0 ,--

* Sensor Usage,14wo methods were developed, using different sen- .
sor modalities, to estimate the grasping error when a manipulator I
hand picks up an object. This error can be compensated by
proper modification of the manipulator's motion.7 In the first
method, a camera views the hand and the object" it holds, and .

compares their image to a "model" grasp one. In the second '.. ..A-.'
method, a wrist force/torque sensor measures the moments of thi
object during transfer motions and, based on a mass model of the -.-
object, the object location relative to the hand is estimated.

. .

An experiment in off-line assembly programming, using WORKMATE, is

described. An assembly task, requiring sensory feedback, was programmed en-
tirely off-line, and the resulting program was subsequently executed on ,o-real

robotics testbed. "

V... ' , % - -. -
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I OBJECTIVE

The objective of this research is to investigate some selected basic problems

in flexible assembly that make human programming of assembly tasks difficult #W

and to incorporate the results of such investigation into a graphics-oriented, as- .. .o-

sembly task development system. -.- .,

IU AIR FORCE RELEVANCE

This research addresses some problems in flexible assembly of

electromechanical components. Improved automation of small batch assemblies

should raise production efficiency, improve product quality, and lower costs.

m RESEARCH DELIVERABLES

The bulk of our work is described in technical papers written under thiscontract, and delivered to the sponsor in annual reports, or as part of this docu- ' .

ment. These papers are first listed below. Following that, our research in these

areas is summarized.

The following six papers have been written under this contract:

9 In the research area of Locational Uncertainty:

- "On the Representation and Estimation of Spatial
Uncertainty," by R.C. Smith and P. Cheeseman;
accepted for publication by the International
Journal of Robotics Research.*

%*... .-

M, ,

Included in this project's Annual Report of February 1985.

4%
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- "Estimating Uncertain Spatial Relationships in
Robotics," by R.C. Smith, M. Self, and
P. Cheeseman; accepted for publication in the
proceedings of the workshop, Uncertainty in Ar-
tificial Intelligence, to be held in Philadelphia,
Pennsylvania, August 1986.

" In the research area of Spatial Reasoning:

"Fast Robot Collision Detection Using Graphics "'
Hardware," by R.C. Smith; published in the
Proceedings of the Symposium on Robot Control .%, .

(SYROCO), Barcelona, Spain, 1985.

" In the research area of Sensor Usage:

"Determining An Object's Location in a Robot's -. _;
Hand By Means of Vision," by Eitan Zeiler,
Robotics Laboratory Technical Note, SRI Inter-
national, August 1984.. - €_

"Estimating Object Location in a Manipulator's

Hand Using Force/Torque Information," by
A. Bergman and R.C. Smith, to be submitted for
publication.

* In the research area of Off-Line Programming: K
"Robot WORKMATE: Interactive-Graphic Off-
Line Programming," by R.C. Smith, Robotics .

Laboratory Technical Note, SRI International,

February 1986

%.p

Included in this project's Annual Report of February 1985.

'The material in this technical note was included in the body of this project's Annual Report of
February 1985.
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IV THE DIFFICULTIES IN MANUAL PROGRAMMING

It is difficult to write programs for a flexible assembly system because of the

sensing and decision making capabilities entailed. From previous experiences at

SRI in sensor-guided assembly, we picked three related problems we considered

most important for research:

* Locational Uncertainty---Estimation of errors in relations among 4,
workpieces, sensors, and effectors due to part tolerances, measure-
ment errors, and positioning errors. 60 .

* Spatial Reasoning---Analyzing the relationships among solid ob-
jects in a three-dimensional space.

* Sensor Usage---Selecting sensors, determining their parameters,
estimating sensor output values, and verifying actions by sensing
(execution monitoring).

In addition to these topics, research in off-line robot programming was per-

formed, and an inter-active graphic robot programming and simulation system

was developed, called WORKMATE.

A. Location Uncertainty
% %

In many applications of robotics, such as industrial automation and mobile

robots, there is a need to represent and reason about spatial uncertainty. In the

past, this need has been circumvented by special purpose methods such as preci-

sion engineering, very accurate sensors and the use of fixtures and calibration

points. While these methods sometimes supply sufficient accuracy to avoid the

need to represent uncertainty explicitly, they are usually costly. An alternative

approach is to use multiple, overlapping, lower resolution sensors and effectors
and to combine all the spatial information (including the uncertainty) from all

sources to obtain the best spatial estimate. This integrated information can often % %

supply sufficient accuracy to avoid the need for the hard engineered approach.

3. .
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In addition to lower hardware cost, the explicit estimation of uncertain spa- .. p.

tial information makes it possible to decide in advance whether proposed opera-

tions are likely to fail because of accumulated uncertainty, and whether proposed

sensor information will be sufficient to reduce the uncertainty to tolerable limits.

* A difficulty in combining uncertain spatial information is that it often oc- -'

curs in the form of uncertain relative information. This is particularly true where

many different frames of reference are used, and the uncertain spatial information

relative to yet another frame is required. Our approach presents a general solu-

tion to the problem of estimating uncertain spatial relationships, regardless of 0

which frame the information is presented in, or in which frame the answer is re-

quired. The basic theory assumes that the errors are "small," so that the non-

linear transformations from one frame to another are approximately linear. -

A representation of spatial relationships which incorporates knowledge

about uncertainties, in the form of probabilities, was described in the previous

report and paper. It was a significant advance over previous work which

generally handled uncertainties only by worst-case analysis, and was thus very

conservative. Our initial research concentrated on spatial relationships with three

degrees of freedom (two translations and a rotation in the plane). Within that, ,',*

framework, we presented a first-order method for estimating the error when un-

certain relationships were

(1) Compounded, increasing the overall uncertainty

(2) Merged, or "averaged," reducing the uncertainty.

Compounding is illustrated by the sequential motions of a mobile robot,

whose every (noisy) move increases the uncertainty about its current location with

reference to its starting point.

In merging, two estimates of a relationship are combined to produce a better

estimate of the relationship. A (noisy) sensor measurement of the robot's location

4 % % _S,
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can be combined with a second estimate of the location obtained by compounding

the movements, providing a better location estimate than either of the original

pieces of information.

Appended to this report is a new paper describing the final results of our
research on this topic. We have intcgrated the approach described ill the previous

paper, with the formalisms of recursive estimation theory, which provides a solid

theoretical framework, and points the way to numerous extensions.

In the new paper, uncertain spatial relationships are tied together in a

representation called the "stochastic map." It contains estimates of the spatial

relationships, their uncertainties, and their inter-dependencies. The paper

describes the map structure, followed by methods for extracting information from >...'..-.

it. Finally, a procedure is given for building the map "incrementally," as new

spatial information is obtained. The map contains the first-order estimate of the ,-..

mean and covariance of the uncertain relationships described, using all the avail-

able information. In addition, general constraints on the spatial variables can be

specified, such as colinearity, or coplanarity of points, and the information in the

map will be updated accordingly. The constraints may even be given with

tolerances; i.e., the constraints can be stochastic, rather than absolute. The paper

illustrates a simple "rectangular" constraint on four poorly-known spatial points,

with a resultant large decrease in their uncertainties. --.- ' !

The theory is illustrated by an example of a mobile robot acquiring.

knowledge about its location and the organization of its environment by sensing

at different times and in different places. The theory is readily extended to six

degrees of freedom, and the formulae for this extension are given in the paper's

appendix. Ultimately, we believe our results are applicable to off-line planning of

sensor and manipulation strategies in numerous robotic domains.

5 . ". ." .-. " *
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B. Spatial Reasoning ,

A particularly important problem in spatial reasoning is the problem of col-

lision avoidance---finding a safe trajectory for a manipulator through an environ-

ment of obstacles. The general problem is unsolved. Our work has focused on

developing tools that aid a user of an off-line robot programming system in defin-

ing robot trajectories that are collision free. Robot motions can be visually in-

spected by the programmer, if they are graphically simulated. However, ex-

perimentation showed that this kind of visual inspection for collisions in the simu- Z

lated robot workcell was tedious and prone to error. An automatic technique to

detect simulated collisions quickly was developed, and described in a previous... .,

paper appended to an annual report. The technique relies on the use of VLSI ...-

"clipping" hardware, which will be common in advanced graphic workstations of

the future. Such hardware exists in the IRIS 2400 graphic workstation used in

our off-line programming system, called WORKMATE. The algorithm can detect

collisions (in simulation) between a manipulator and its environment at high

speed---sufficiently fast for animation. It was implemented in WORKMATE.

C. Sensor Usage

It is highly desirable to develop approaches for determining the location of a

workpiece in a manipulator's hand; the error in the grasp can then be estimated

and corrective motions made by the manipulator. Two methods were developed

to determine the error in the grasp: one, by viewing the hand-held object with a .

camera; the other, by measuring forces and torques exerted by the object on the -'-Z".

robot's wrist.

A . _P
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1. Grasp Correction with Vision

In the first approach, a prototype of the object is grasped by the

manipulator, and brought to an inspection station, where a visual prototype of the

object, when correctly grasped, will be trained. The manipulator presents the ob-

ject to the camera several times, each time positioning its gripper at the same

location under the camera. A binary image of the correctly grasped object is first

obtained, and image features of the object in this "model" grasp are stored. In

subsequent training steps, the object's location in the hand is perturbed, in one

degree-of-freedom at a time. Since the manipulator always positions its hand at

the same location, the perturbed object will appear to have moved in the image,

with respect to the model image. Image features of the object are extracted, and

associated with the known error magnitude, and the spatial degree-of-freedom in

which the error is introduced. The statistics over a number of such training steps

can be used to build a sensitivity matrix, which relates the magnitudes of the

given errors in the spatial dimensions, to the magnitudes of changes in the image

features of the object.

After training, the manipulator can now acquire an object, with an un-

known grasping error, and bring the object to the inspection station. Features

from the image of the object are compared to the features stored for the object

when it was held correctly. By using the inverse of the sensitivity matrix, ..

developed during the training procedure, it is possible to estimate the grasping er- ",

ror based on the disparity of the image features. The method, its implementation,

and experiments are described in an appended paper.

7
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2. Grasp Correction by Force/Torque Sensing

In the second approach, a force/torque sensor mounted on the manipulator's

wrist is used to determine the grasping error. The position of the object in the

gripper is determined by measuring forces and torques at the robot wrist after

putting the gripper in several different positions where the robot is either at rest

or moving in constant velocity; the orientation error of the part in the gripper is

determined by measuring forces and torques at the robot wrist during a controlled
acceleration.

The procedure is practical to implement, and it is theoretically feasible to

accurately estimate the error in the grasp of a held object, even while the

manipulator acquires and transfers it. One advantage of this procedure, corn- .'.

pared with the previously described method, lies in removing the necessity of first AL

* moving the part to an inspection area, where the grasping error would be

determine---thus saving time. A major implementation problem is that robot

manufacturers do not currently provide the user with velocity and acceleration

control over the robot. However, rather than controlling the acceleration of the

robot, we can define several fixed motions for the robot to make, and measure the

accelerations. When these motions are later made by the manipulator, the ac-

celeration parameter, estimated a priori, can be used in our calculations. The

detailed theory behind this method is presented in an appended paper.

D. Off-Line Programming With WORKMATE

An off-line robot programming system, called WORKMATE, was developed

under this contract and demonstrated to the Industrial Affiliates of the Robotics

Laboratory at SRI, and to the sponsor. Its description has been submitted as part

of an annual report. The work has been extended, and a further off-line program-

ming experiment has been performed. A robot assembly task was written off-line,

then executed on the real robotic testbed. The programs generated included the

use of sensory feedback to determine part locations that were unknown before on-

line execution. The results, described below (Section V), detail the deficiencies

8
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and virtues of the current implementation, so that future research can be planned
appropriately.

V OFF-LINE PROGRAMMING USING WORKMATE

A. Overview

1. Assembly Station Configuration

The SRI Assembly Testbed Station consists of two PUMA 560 robots, con-

trolled by VAL-Il, and an Automatix AV-4 vision module. Each of these applica-

tion modules is controlled by a dedicated LSI-1I. The LSI-11 module computers

are controlled in a hierarchical fashion by a VAX-11/750 computer. In addition,

there is a Silicon Graphics IRIS-2000 workstation connected to the VAX.

2. WORKMATE Description _
WORKMATE is an off-line programming system developed for the IRIS by

Randall Smith of SRI International under AFOSR Contract F-49620-84-

K-0007P00001. The WORKMATE acronym stands for WORKstation Modeling,

Analysis, Training, and Emulation. The system is able to model robots, fixtures,

and parts, using a polygon-based surface modeling package. Backwards arm solu-

tions and relative positionings are included in the package; the ability to servo the

robots requires a separate (forward) arm solution package that must be built for

each type of robot modeled. Figure 1 shows the model of the assembly station

used in this experiment.

The system gives a true-perspective three-dimensional shaded polygon

representation of the scene. Options include wire-frame depiction, and red-green

stereo for filled-polygon or wire-frame modes. Shading is based on a single light- %"

source at infinity, with self-shading only; no shadows are generated. Scenes are %

generated at four frames per second. The viewpoint is controlled by the mouse.

The current in-house hidden-surface algorithm requires special coding for intra-

object surface ordering as part of the modeling process. Because the polygons in

each object have a consistent relationship with each other, they can be ordered
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Figure 1: WORKMATE Model of the Assembly Station
'S..,....-

into a display tree at compile time. However, since objects can be moved, the sys- --.',

tern does not attempt to make a viewpoint-dependent object tree. Instead, the

objects are displayed in a fixed order, regardless of the viewpoint. This is seen as

one of the major areas needing improvement; preferably, special-purpose .

hardware would eliminate the need for such labor.

The WORKMATE system has three main robot-connected capabilities. The

robots can be "servoed" and positioned, using various modes of motion. A robot

program can be created, using "taught" positions, and the resulting program can

be "played back" for examination and verification. After the operator is satisfied,

the final program can be sent to a text file on disk for eventual execution.

10
% % %%
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3. Off-Line Programming Scenario

The name "off-line programming" describes a system that is able to

generate executable programs at an arbitrary time, away from the actual robot

station that will be doing the work. In other words, the programming is not done
"on-line," that is, using the running equipment.

An off-line programming scenario in our laboratory starts with the operator

sitting down at the IRIS graphics computer and generating a robot program using

WORKMATE. The robot program is a series of commands; it is a simple text file

that can be printed out or copied from one computer to another. Our programs

are sent to the VAX for storage.

At a later time, the program may be executed on the actual robot station.

A station-master program containing an interpreter reads in the robot program,

performs the necessary calculations and command decompositions, and dispatches

module-level commands to the appropriate LSI-11 module computers. The

module computers perform similar calculations and decompositions which result in -..

device-specific commands. Each of these commands is then sent to the ap-

propriate device, which may actually contain its own microprocessor controller.

Commands may be synchronous and tie up the controller until a reply is received;

they may be polled, in which case the controller goes off and later checks to see if

a response has been received; or, they may be of the "fire and forget" variety.

Thus, both the module computers and the station supervisor computer may use

completion signals in various ways. In this manner, a set of completion messages

similar to the command messages flows up the computer hierarchy. %-

11 ."-.% ..
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B. Assembly Experiment

1. Assembly Parts

To demonstrate the capability of the off-line programming system, a lantern

flashlight was chosen as an example of part assembly. The flashlight selected was

the Eveready Energizer Halogen Light No. 209HS, a recent model that has been

designed well for ease of assembly. The flashlight consists of four parts: the case,

or flashlight body; the battery; the light bulb, reflector, and switch assembly; and

the cover top which surrounds and protects the light assembly. Figure 2 shows

the actual parts used in the experiment; Figure 3 shows a graphical display of the

part models used by the system.

a. The Case

The black flashlight case is molded out of a stiff plastic. It has a flexible

button attached flush on the outside, with a chamfered interface area on the in-

side. When the light assembly is put on the flashlight, a cylindrical switch plunger

on the assembly is inserted into the interface area. (The switch is activated by

pressing an outside button, which uses a rigid extender in the interface area to

depress the switch plunger.) The flashlight has a cylindrical mouth opening with

an 86 mm inside diameter. Although this opening is manufactured threaded so

that the light assembly screws into place after it has been inserted, for our experi-

ment the threads on the case were shaved off, resulting in a press-fit after inser-

tion. We felt that the experiment as carried out was sufficiently complex as to

demonstrate the concept of off-line programming, without introducing difficulties

that would strain the limits of both the capabilities of the robots and the time

constraints of the project.

12
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b. The Battery

The battery is a "super heavy duty" standard 6-volt lantern battery. It

weighs 1.3 pounds, and has smooth metallic sides. The diagonal dimension of the

battery is 82 mm, resulting in a +/- 2 mm tolerance for a straight insertion. The

battery is the first part to be inserted into the case. Figure 4 shows the system's

view of the insertion (the second robot has been deleted for ease of display).

Figure 5 shows the actual insertion. ..

c. The Light Assembly

The light assembly consists of a parabolic reflector containing the lamp, at-

tached to the lens in front, the switch on the top, and a contact plate in the back.

The lens has a cylindrical threaded flange, 15 mm deep, that fits over the mouth

of the flashlight. The switch, as mentioned before, must be oriented in the proper

direction so as to engage the interface area when the light is inserted into the

flashlight case. The contact plate is a rectangle 60 x 90 x 7 mm thick, which

presses down against the battery springs in the assembled flashlight.. Since the

rectangle is too large to let the light assembly be inserted directly, the light as-

sembly insertion requires a series of intricate movements. First, the assembly is

rotated 90 degrees so that the rectangular plate and the lens flange are end-on to

the flashlight mouth, as shown in Figure 6. The assembly is lowered until the end

of the plate is beneath the rim of the case's mouth (see Figure 7). Then, the light
assembly is rotated back towards the case, which hooks the plate under the inside

of the mouth. The rotation is continued slightly and the assembly is lowered, to

seat the switch in the interface area and hook the front end of the lens flange

(closest to the white button) over the flashlight mouth. Finally, the assembly is

lowered still further and rotated slightly backwards again, to seat the rest of the

flange around the flashlight mouth.
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Figure 4: Off-Line Programming of the Battery Insertion
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Figure 7: Execution of the Light Assembly Insertion .. ,r .,
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d. The Cover "

The cover is made of a stiff, bendable black plastic. It is square, like the

outside of the flashlight case. The cover fits around the lens and the flange. It

has a pair of clips, or latches, that stick down on the left and right, sides of the

case and serve to hold it in place. These are supposed to snap onto ledge depres-

sions when the cover has been pressed on fully with the proper alignment. Figure

8 shows the results of this step.

, *q,°0. %
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Figure 8: Assembling the Cover onto the Flashlight Subassembly
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2. Result8

This section provides an overview summary of the results obtained from this

experiment. 
',..

* The ability to write programs for robots off-line, using
WORKMATE, was demonstrated.

" The ability to write off-line programs entailing the use of sensory '-
feedback to determine previously unknown conditions and loca-
tions on-line was demonstrated.

* The ability to send programs written off-line to an actual robot
station, and to execute them, was demonstrated.

the program as designed off-line. A good program was able to

successfully assemble the flashlight.

" Much was learned from the experiment. An important resulting
point is that breakdowns occur when the simulation fails to model
the real world appropriately.

C. Experience with the System .0

We experimented with different configurations for the system. Based upon

our observations, we found that the ease of use of the system depends on many

factors. These can be broadly classified as making the user interface elegant, con-

trollable, and fast.
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1. Realistic and Detailed Model

Part of the process of making the user interface elegant is providing a realis-

tic and detailed model to the user. The hidden-surface algorithm should correctly

clip the unseen parts of the polygons from all viewpoints so that occlusion cues .

can be employed by the user to determine the relative locations of objects in

space. The parts should be shaded, depending upon their angle to the viewpoint

so that the user can employ shading cues to determine spatial orientation. Both NO.le

of these serve to make the scene appear more realistic.

The scene as portrayed must also be detailed, although it is acceptable to . ..

make some approximations for the sake of efficiency. Explicit details make the

user feels that he understands the scene better; he instantly recognizes what is go-

ing on, as opposed to having to spend time figuring out what over-simplified blob-

like models on the screen are supposed to represent. Details are also mandatory

when complicated, intricate motions are programmed by the user, based on the %. %

configuration of the parts. For example, the light-assembly insertion was

programmed based on inserting the rectangular plate of the light in past the rim

of the flashlight case's mouth. In order to do this correctly, all the details of these

parts had to be modeled accurately, as shown in Figure 9.

2. Simulation of Arm Motion

A useful feature of the system was the ability to simulate arm motion. Both

straight-line and joint-interpolated motion were modeled. Goal positions could be

specified as precision-point poses, absolute Cartesian points, or relative Cartesian

points. .
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Figure 0: Closeup of the Necessary Details Used in Modeling the Light
Assembly Part

S . 4

3. Movable Eye while Inside Routines

A recent extension to WORKMATE is the ability to relocate the eye while .- .

the user is inside other movement-defining routines. It is useful to be able to -.

move around a scene and look at a situation from several different angles, espe-

cially during the definition of a complex or intricate movement sequence.

4. Motion and Alignment of Part8 -.-

A very useful feature of the WORKMATE system is the ability to move the

arm relative to coordinate frames attached to parts on the table (as well as the

traditional world- and tool-relative motions). In addition, the system has the

capability of defining motions to particular relative locations, i.e., directly above

the part, or aligned with the part, or both. This capability has the advantage of t '

specifying an entire movement sequence with just one instruction: one can specify

a motion to align the arm's hand above a part to be mated, and the system im- '-

mediately generates the pro-ram instruction and moves the arm to that position.

20
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The "above" position for each part is based on a prespecified height; the "align"

position projects the current location of the tool onto a prespecified axis of the

part, with the tool then oriented along the axis.

5. Real-Time Turnaround

We found that it was very important for the system to have a real-time tur- -

naround, i.e., more than four frames displayed each second. If the rate is lower, -,

then not only is the illusion of motion destroyed, but also the mouse cannot be

controlled properly: The user overshoots with the mouse on mouse-driven motion

commands; he then corrects, but overshoots on the correction---all because the

feedback is not real-time. Long turnaround time is a serious problem for both ser-
e".,. .1.voing the arm and moving the eye's viewpoint using the mouse. % % %
Z% ZSA

The speed of the system depends on the number of polygons in the model,

the amount of processing that has to be done to compute the display, and the

processor speed. The speed also depends on whether the entire software system

can be stored in the physical memory at once, or whether the system is forced to

page sections of the program to disk in order to keep up the virtual memory

space. We could not modify the first factors much, except work without one of

the robots in the scene when we were only testing out algorithms; however, we

were able to affect the last factor by cutting down the physical size of the code

and by using additional memory boards. Having sufficient physical memory to

keep the entire system in memory dramatically increased the turnaround time

from one frame every half-minute to subsecond rates.
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6. Use of Defaults

It is important to maintain the speed of the system by designing the user in-

terface to require as few mouse clicks as possible. This can be done by extensive

use of defaults in the system parameters.

A robot controlling system as complex as WORKMATE requires many

parameters to specify the robot motion; e.g., which robot or hand is going to be

moved, whether the movement is joint interpolated or straight-line, whether the

goal position is a precision-point joint pose or a coordinate point, and whether the

coordinate point, if used, is world relative, robot relative, or part relative. If a

part-relative coordinate system is used, the appropriate part must be specified. %

All of these commands only define the motion as output to the final generated

robot program; a similar series of parameters must be specified to define the mo-

tion used to servo a robot to the position to be taught.

The most straightforward implementation of the system requires the user to

specify each of these parameters for every motion taught. Even though the

specification of a single parameter requires only a single mouse click on a dis-

played menu, the amount of time spent clicking the mouse significantly slows the

use of the system down when each parameter must be defined. A solution to this __

problem is to use defaults in any and all cases possible, while maintaining the

power to change parameters if required. For example, the system now works with

the "current robot," instead of requiring that the user specifies which robot he is

working with every time another movement is taught. This provision is impor-

tant because the amount of mouse clicks required to interact with the system basi-

cally defines the amount of time required to write a complete robot program. We

found that such an apparently insignificant matter as the number of mouse clicks

required for each movement had a large impact on system usability. ,.
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4
D. Discussion -.

1. Successes

a. Rigid Parts

The modeling system is at its best when it represents rigid parts. The light A.

assembly, the battery, and the case were all represented well by the system---espe-

cially when it came to acquiring the pieces using a robot.

b. Intricate Motions
** . *d

The system excelled at programming intricate motions. For instance, seven

intermediate positions were successfully programmed to insert the light assembly Ac i'r"

into the case, as detailed in the light-assembly parts section. Other motions were

successfully programmed to find the light, pick up the light, move out of the way,

find the case, and move over the case. The movements entailed in inserting the

battery and the cover employed similar series of intricate motions. I..-

One of the advantages of the system was the controllability of the view. "

Since the scene can be viewed from any angle and at any degree of magnification, %- 2

it is simple to enlarge the scene from a convenient angle until the sections of the

parts being assembled fills the screen. Small, significant motions can then be seen

clearly and programmed easily. In contrast, in the real world it is often imprac- 4
tical or impossible to view an assembly process from a preferred angle, or shift

one's viewpoint from one side of the assembly to the other because the robot's

base is in the way. Finally, safety considerations often prevent the programmer

from closeup of real parts held by a robot. V.

The main advantage of the system's capability for programming intricate
motions is the ease of writing the program. It is a simple thing to move the robot

.'.. -. " .'

images around, teach different intermediate and final points, and have the system
generate the text program so that the robots can repeat the motions at will. It is

much more difficult to set the actual robots and parts up, and attempt to go

through the process of teaching intricate motions using the actual hardware. 'i
There is a tendency in the second case to cut corners---to not piogram-in extra in-

1P * .. .
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termediate poses, and to settle for a program that already "sort of" works. In the-.

case of off-line programming, it is a simple matter to add intermediate positions,

so as to make the insertion proceed well, because the programmer never has to

type the instructions. If an insertion works better with, say, fifteen intermediate

points, then the programmer trains these fifteen intermediate points. Also, it is

significantly easier to reprogram a motion off-line, which means there is no reason

to settle for second-best. %.-%
%. -

c. Quick Reprogramming of Robot-Motion Strategies

In addition to the ability to quickly reprogram a single motion, the system is

able to program a completely different type of motion in its place, i.e., changing

the strategy of the movement. For instance, the battery insertion was originally

accomplished directly: the battery was acquired, positioned directly above the

mouth of the case, and inserted straight downwards into place. This worked con-

sistently while the ambient lighting was in its normal position. However, when .

the lighting was shifted significantly, the system was no longer able to acquire the

position of the case accurately, and the straight insertion program failed. To cor-

rect for this, a staged insertion was programmed. The battery was tilted 30

degrees or so sideways, forming a tilted surface, in effect a chamfer, with its own

side and bottom. The battery was lowered until it contacted the back edge of the

case's mouth with its bottom, and then moved forward until it contacted the front

edge of the mouth with its side. Next, the battery was rotated back to vertical as

it was lowered into the case. In this manner, the robot system was able to deal

with more inaccuracy in the location of the case than in the straight insertion.

NA ...-.
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d. Program Verification N I'
A benefit of off-line programming, which was expected and % ell realized, is

the verification of robot programs by simulation. When a robot program is first

written, the programmer expects for the most part that it will execute success- 4.

fully. However, there are always difficulties involved in working with real robots.

To the extent that the simulation models the robots faithfully, the off-line pro-

gramming system significantly helps in the task of program verification. %

The specific areas in which the simulation proves most useful are rea-

chability, singularity determination, and configuration analysis. It is very easy to

see, using the simulator, whether a part in a particular pose on the table is reach- " - • "

able by the arm, or whether the wrist must be contorted to approach the part

properly. Similarly, it becomes easy to notice, using the simulator, whether a par-

ticular movement or grasping operation forces the arm to come close to a joint %
singularity. If this is the case, then that particular movement or grasping opera-

tion can be reprogrammed, the robot can be relocated, or the location of the part

can be changed or restricted to another region. It was also useful to verify the

robot programs in order to determine the robots' configuration. For example, we

started out with the robots in opposite (right and left-handed) configurations.

However, after using the simulator to observe the robots work together, it was

seen that the robots were getting "tangled up" with each other. The second

robot's configuration was changed so that both of the robots worked in a right-

handed fashion. This produced much better results.

. Z ,. .
i
.
-25w- .



2. Difficulties

The main difficulties encountered with the off-line programming system can

be attributed to the lack of power in modeling real-world phenomena. )ifficulties

include dealing with flexible parts, interpart contact and resulting grasp rotation,

weight and slippage, dynamics, robot servoing, and sensing.

a. Flexible Parts

The current off-line programming system has no way of representing flexible -

parts. This discrepancy was felt mainly with the cover in two particular situa-

tions. Although the cover appears to be made out of a relatively rigid plastic, it is

mildly deformable. When the robot first grasped the cover and attempted to in-

sert it directly over the top of the flashlight, the insertion failed because the

squeeze of the robot's motor-driven fingers, although not extraordinarily firm, dis-

torted the outline of the bottom part of the cover from square to rectangular.

This caused the cover to become slightly too narrow to fit the flashlight success-

fully, and the flashlight was jammed. This problem was corrected by grasping the

cover at a different, more reinforced location.

A second problem was encountered with the attempt to model the latches.

The latches engage when the cover is lowered to a particular height (i.e., as far . '.

down as it can go) above the flashlight and is aligned properly back and forth un-

til it is at the correct orientation. Even then, the latches are "capricious." There

was no way to model the random engagement or nonengagement of the latches, . -.

and so the off-line programming had to proceed in a feed-forward manner. The

robot was programmed to catch one edge of the cover over the light assembly,

center and align the cover, and then press downwards. The robot was then

lowered to slightly below the minimum height of the cover to provide a small ex- .

tra force in the insertion. We hoped that this would result in a successful latch-

ing, and for the most part, this proved to be the case. So, even though the latch-

ing process could not be modeled, operator knowledge served to complete the

capabilities of the off-line programming system. and a workable motion program . % * S.

could be generated. i'W -40
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b. Interpart Contact and Grasp Rotation

The WORKMATE system is incapable of modeling the phenomena as-

sociated with the contacting of two parts. Interpart contact in general remains a

difficult problem. When two parts contact each other, they do not interpenetrate;

instead, forces and torques are generated that serve to modify the motion of the

contacting parts. In particular, when a part with smooth sides, such as the light A

assembly, is held in a gripper and pushed against another part, such as the flash-

light mouth, the part in the hand will tend to twist and rotate with respect to its

former grasp in the fingers. -

This cannot be modeled by the existing system. Instead, the system shows

the light assembly maintaining a constant grasp relationship with the fingers, and

penetrating the model of the flashlight. However, the motion constraint

generated by the lens flange enveloping one side of the flashlight mouth and ac-

ting like a hinge is a significant part of the insertion. Thus, the operator is forced -. J

to move the simulated hand around only, and to visualize what is happening to

the constrained light assembly without seeing it depicted in front of him. 4

An additional and related problem is the fact that there is currently no way

to adjust the positions of parts once training a program is under way. The parts

stay where they have been placed by the robot. Thus, the battery ends up hover-

ing in the middle of the flashlight, where it was released after its insertion, and

the light ends up tilted inside the flashlight case. Although this is a cosmetic

detail, it could become significant in a different assembly. An immediate solution

is to allow the operator to drag and position parts in the scene, as well as arm

joints. A better, but more complex solution, is to model both the erfects of

gravity and part nonpenetration upon contact, which would result in the system

automatically placing the battery in the proper location. w -l,

27

* ' %-" %

%~ %

I- O. **9~ -1'? 1 - - -- .._-



c. Weight and Slippaye ,,

Another real-world phenomenon that the system fails to model properly is e

that of slippage due to weight. During one programming session, the battery was

grasped at the top and to the rear of center. A combination of the excessive -

weight of the battery and its smooth sides rotated the battery around the axis of

grasping until its center of gravity was beneath the grasp, and the battery was

canted 20 degrees. The system attempted to insert the battery directly into the . ,,

flashlight, and failed, because the simulation did not model the actual locations of

the parts faithfully. I

d. Dynamics

An unanticipated problem stemmed from the fact that parts slip differently

when the robot moves at different speeds. In particular, parts that do not slip at .

all when the robot is moving at slow speeds can suddenly change to flying out of

the hand when the robot is moving at faster speeds. The battery was particularly

pernicious in this manner, due to its smooth sides and its relatively large mass.

The current simulation is based on kinematics, and does not take dynamics into

consideration. In the end, we simply had to restrict the execution speeds of the

robots to values slow enough to ensure successful transfers. This problem may be

overcome by modeling the dynamics and friction associated with the objects.

e. Robot Servoin -

There are two problems with servoing the real robot: moving too close to

joint singularities and attempting to change configurations. These problems are

caused by changes in the way the program is executed (although the programs

themselves do not change). The changes are a result of parts being relocated, and

the fact that the system can adjust its execution to go along with these relocations : "."

by using part-relative motions and sen,%ory feedback to determine the part loca-

tions, inside the program itself, as travel off-line. For instance, in a straight-line Ire

motion near a singularity, the controller may command the robot to move too

quickly in an imprecise manner. In addition, especially if the verifier is not used

to extensively check programs out under enough different circumstances, it is pos-

28
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sible to train programs on the simulator that will not execute on the real robot

controller because the current position of the parts would cause the robot to

change configurations. A temporary solution is to ensure that the parts are in

some initial configuration that does not produce these problems. A long-term ..-. 1

solution is to create an intelligent and flexible execution interpreter that can

foresee such difficulties and modify the arm paths in real time to circumvent

them.

f. Sensing "

The biggest problems we had were with sensing. Since the current system

does not have a vision-module simulator, it is unable to predict accurately where

the center of gravity of the two-dimensional silhouette of a part, returned by the

vision module, is located. Instead, the simulation system uses the center of the ,

modeled part as its definition, which requires that a calibrated adjustment be

made on the value returned by the actual vision system. This is undesirable be-

cause it slows down the operator and is difficult to determine; furthermore, it can % %

introduce inaccuracies into the system. A vision-module simulator would

automate this process. In addition to this problem, the usual sensor difficulties '

such as transparent parts, stray reflections, and parallax distortions, caused :

problems in the execution of the robot programs. Figure 10 shows the actual vi-

sion module's view of the parts on the light table. Notice that the transparent.

rim of the light assembly in lower right has completely disappeared. A facility to
model the vision module's processing of images would at least eliminate or call at-

tention to the known problems. P-

•-, ..' .,%.
},. p .. ',. ,,.
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Figure 10: The Vision Module's View of the Four Parts

I ,- - j %.

I.%- ,.-*

E. Conclusions

In this project, we explored the problems of building and working with a

robotic off-line programming system. We demonstrated the actual use of the sys-

tern with a robotic testbed: not only were we able to write robot programs, but

we were able to successfully execute them as well. The robot programs included ..-.-.

the use of sensory feedback to determine part locations that were unknown before .'"-•

on-line execution. Many successes and problem areas were identified. An impor-

tant point is that the execution of the robot programs does not work well when ,..

the simulation fails to model the physical phenomena of the actual system. {.

There is much left to be done in the area of exploring a general off-line pro-

gramming systcm. A mandatory package that needs to be added is an editor that

can model parts and move them around and display them under user control. In

addition, there is still much work to be done in the program editor; the abilities to

30 J.



reedit programs, to randomly edit movements, to branch and loop, and to call

robot subroutines, are all lacking. The lacks in sensor simulation have already

been discussed. Finally, the difficult problem of contact simulation, and the

resulting closed-kinematic-chain motion problems required for a full contact

simulation, remain as challenges to be worked on.
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publication by the International Journal of Robotics Research.

(2) "Estimating Uncertain Spatial Relationships in Robotics," by
R.C. Smith, M. Self, and P. Cheeseman; accepted for publica-
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August 1986.

(3) "Fast Robot Collision Detection Using Graphics Hardware," by
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Means of Vision," by Eitan Zeiler, Robotics Laboratory Tech-
nical Note, SRI International, August 1084.
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Force/Torque Information," by A. Bergman and R.C. Smith, to
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ESTIMATING UNCERTAIN SPATIAL RELATIONSHIPS
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Estimating and autonomous vehicle operation, prior structur-
ing will not be possible, because of dynamically

Uncertain Spatial changing environments, or because of the demand
for greater reasoning flexibility. Spatial reasoning is

Re.lationships further complicated because relationships are often
in Robotics not described explicitly, but are given by uncertain

relative information. This is particularly true when
many different frames of reference are used, produc-
ing a network of uncertain relationships. Rather J.8

Randall Smith* than treat spatial uncertainty as a side issue in geo-I-.
metrical reasoning, we believe it must be an intrin- .

Matthew Selft sic part of spatial representations. In this paper,
we describe a representation for spatial informa- ...

Peter Cheesemant tion, called the stochastic map, and associated pro-
cedures for building it, reading information from it, - -

and revising it incrementally as new information is .4.

obtained. The map always contains the best esti-
SRI International mates of relationships among objects in the map,

333 Ravenswood Avenue and their uncertainties. The procedures provide a
Menlo Park, California 94025 general solution to the problem of estimating un-

certain relative spatial relationships. The estimates
are probabilistic in nature, an advance over the pre-%
vious, very conservative, worst-case approaches to

The research reported in this paper was supported the problem. Finally, the procedures are developed ,.

by the National Science Foundation under Grant in the context of state-estimation and filtering the-

ECS-8200615, the Air Force Office of Scientific Re- ory, which provides a solid basis for numerous ex-

search under Contract F49620-84-K-0007, and by tensions.

General Motors Research Labs.

1 Introduction

Abstract In many applications of robotics, such as industrialautomation, and autonomous vehicles, there is a
need to represent and reason about spatial uncer- , *
tainty/. In the past, this need has been circumvented %. ,. .

In many robotic applications the need to rep- ty Ie past ths s b crcumvned
resent and reason about spatial relationships is of by special purpose methods such as precision engi-..

great importance. However, our knowledge of par- neering, very accurate sensors and the use of fix-
ticular spatial relationships is inherently uncertain. tures and calibration points. While these meth-

a ds sometimes supply sufficient accuracy to avoid
The most used method for handling the uncertainty
is to 1pre-engineer" the problem away, by structur- the need to represent uncertainty explicitly, they
ing the working environment and using specially- are usually costly. An alternative approach is to .

suited high-precision equipment. In some advanced use multiple, overlapping, lower resolution sensors P

robotic research domains, however, such as auto- and to combine the spatial information (including

matic task planning, off-line robot programming, the uncertainty) from all sources to obtain the best
spatial estimate. This integrated information can

*Currently at General Motors Research Labs, often supply sufficient accuracy to avoid the need
Warren, Michigan. for the hard engineered approach.

tCurrently at NASA Ames Research Ctr.,
Moffett Field, California. In addition to lower hardware cost, the explicit
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estimation of uncertain spatial information makes utilise graph transformations. '...

Vit possible to decide in advance whether proposed In summary, many important applications re-
operations are likely to fail becase of accumulated quire a representation of spatial uncertainty. In ad- ,"

ucertainty, and whether proposd sensor informs, dition, methods for combining uncertain spatial in-tion will be suffcient to reduce the uncertainty to formation and transforming such information from '" .

tolerable limits. In other situations, such as in- one frame to another are required. This paper
expe,,ive mobile robot, the only way to obtain presents a matrix representation of spatial uncer- ,,.

sufficient accuracy is to combine the (uncertain) talnty that explicitly represents the uncertant for
information from many sensors. each degree of freedom in the world of interest. A

A difficulty in combining uncertain spatial infor- method is given for combining uncertain informa-
mation is that it often occurs in the form of un- tion regardless of which frame it is presented in,
certain relative information. This is particularly and it allows the description of the spatial uncer- N. .-

true where many different frames of reference are tainty of one frame relative to any other frame. The, : .
used, and the uncertain spatial information must necessary procedures are presented in matrix form, , . "- "

be propagated between these frames. This paper suitable for efficient implementation. In particular,
presents a general solution to the problem of es- methods are given for incrementally building the
timating uncertain spatial relationships, regardless best estimate "map* and its uncertainty as new'-..,...
of which frame the information is presented in, or pieces of uncertain spatial information are added.

in which frame the answer is required. The basic
theory assumes that the errors are "smal', so that
the nonlinear transfoimations from one frame to 2 The Stochastic Map
another are approximately linear.

Early methods for representing spatial uncer- Our knowledge of the spatial relationships among
tainty (e.g. [Taylor, 19761) numerically computed objects is inherently uncertain. A man-made ob-

min-max bounds on errors in typical robotics appli- ject does not match its geometric model czactly
cations. Brooks extended this analysis to symbol- because of manufacturing tolerances. Even if it
ically computing min-max bounds [Brooks, 19821. did, a sensor could not measure the geometric fea-
This min-max approach is very conservative com- tures, and thus locate the object ezactly, because of
pared to the probabilistic approach in this paper, measurement errors. And even if it could, a robot
because it always assumes the worst case when using the sensor cannot manipulate the object ez-
combining information. More recently, P proba- actly as intended, because of hand positioning er-
bilistic representation of uncertainty was developed rors. These errors can be reduced to neglible lirits .-

for the HILARE robot [Chatila, 19851 that is sim- for some tasks, by upre-enginerring' the solution
ilar to the method presented here, except that it - structuring the working environment and using
uses only a scalar representation of positional un- specially-suited high-precision equipment - but .,
certainty instead of a multivariate one. In a recent at great cost of time and expense.

paper, Brooks developed a representation of spa- However, rather than treat spatial uncertainty
tial uncertainty based on bounding cylinders and a as a side issue in geometrical reasoning, we believe
combining operation based on the intersections of it must be treated as an intrinsic part of spatial A.

on callb teaed asa nrni atopthelsuch cylinders [Brooks, 19851. Smith and Cheese- representations.man flSmith, 19841, ISmith, 19851), working on

problems in off-line programming of industrial au- In this paper, uncertain spatial relationships will

tomation tasks, proposed operations that could re- be tied together in a representation called the

duce graphs of uncertain relationships (represented stochastic map. It contains estimates of the spatial

by multivariate probability distributions) to a sin- relationships, their uncertainties, and their inter-

gle, best estimate of some relationship of interest. dependencies.

The current paper extends that work, but in the First, the map structure will be described, fol-

formal setting of estimation theory, and does not lowed by methods for extracting information from

2
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I it. Finally, a procedure will be given for building where E is the expectation operator, and x is the
the map inercmentally, as new spatial information deviation from the mean. -
is obtained. For our mobile robot example, these are: '" "

To illustrate the theory, we will present an exam-

pie of a mobile robot acquiring knowledge about its r 1ra 2  asy OU..

making sensor observations at different times and (7X J~v #0.2* o
location and the organisation of its environment by i 9 j , C(x) = 03, ' 0 ', .

in diferent places. Heeh ,vrac
Here, the diagonal elements of the covariance ma-

2.1 Representation trix are just the variances of the spatial variables,
while the off-diagonal elements are the covariances

In order to formalize the above ideas, we will define between the spatial variables. It is useful to think
the following terms. A spatial relatiornship will be of the covariances in terms of their correlation co- AN
represented by the vector of its spatial variables, efficients, pij: '.
x. For example, the position and orientation of a
mobile robot can be described by its coordinates, A E(i, ') 1 < %1.
z and y, in a two dimensional cartesian reference Ga, ,"i)i!2,)'
frame and by its orientation, , given as a rotation X

about the:x axis: .4,Similarly, to model a system of n uncertain spa- *-.

z tial relationships, we construct the vector of all the -.
'! x = .spatial variAblem, which we call the system state wee-

tot. As before, we will estimate the mean of the
state vector, 9, and the system covariance matriz,

An unceertain spatial relationship, moreover, can x)
be represented by a probability distribution over its
spatial variables - i.e., by a probability density X *"

function that assigns a probability to each particu- X2 C.
lar combi .. %tion of the spatial variables, x: x= * , =, CNx

PNx) f xNdx. X$

Such detailed knowledge of the probability distri- 1
bution is usually unneccesary for making decisions, C(XI) C(xI,x 2 ) ... C(x 1 ,x.)

such as whether the robot will be able to complete a C(x 2 ,xl) C(x2 ) ... C(x2 ,x,,) d

given task (e.g. passing through a doorway). Fur- (2)ifctin. o tee esns e-hos o oe
thermore, most measuring devices provide only a (,' , C(x,,) '
nominal value of the measured relationship, and we 1X-,Xii lX-,X2 .

can estimate the average error from the sensor spec- where:ifications. For these reasons, we choose to model w .. ,

an uncertain spatial relationship by estimating the
first two moments of its probability distribution- C(x ,x,) z EO5.i*), (3) .-
the mean, 9 and the covariance, C(x), defined as: =

C(x,,xi) = C(xiX,)T. qiwI * E(x), Here, the xi's are the vectors of the spatial vari- "

ables of the individual uncertain spatial relation- N.X - ,(I) ships, and the C(x)'s are the associated covari- %

C(x) E(RiT). ance matrices, as discussed earlier. The C(xi,xy)'s

D-5
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are the croes-covariance matrices between the un- limit theorem indicates that the resulting distribu- %

certain spatial relationships, which allow for de- tion will tend to a normal distribution:
pendencies between the uncertainties of different
spatial relationships. These off-diagonal matrices
provide the mechanism for back-propagating new exp -2(x - )Tc-(x)(x - *)] . (4)
information added to the map, in order to im- P(x) = (4)

prove previous spatial estimates, and are signifi- ! P." .

cantly more sophisticated than previous methods W ig ue n al a spfor doing this.We will graph uncertain spatial relationships by . ..

plotting contours of constant probability from a
In our example, each uncertain spatial relation- normal distribution with the given mean and co-

ship is of the same form, so x has m = 3n elements, variance information. These contours turn out to
and we may write: be concentric ellipsoids (ellipses for two dimen-

sions) whose parameters can be calculated from the '- ** './'-
zi covariance matrix, C(xi) [Nahi, 19761. It is im-

i g -- portant to emphasize that we do not assume that

the uncertain spatial relationships are described by ,'" . '

normal distributions. We estimate the mean and
variance of their distributions, and use the normal 8r [ ] 1 distribution only when we need to calculate specific

C~xi~x o's,, o, r,,, jprobability contours.

I o shoIn the figures in this paper, the plotted points
show the actual locations of objects, which are

Thus our "map* consists of the current estimate known only by the simulator and displayed for our

of the mean of the system state vector, which gives benefit. The robot's information is shown by the

the nominal locations of objects in the map with ellipses which are drawn centered on the estimated..

respect to the world reference frame, and the as- mean of the relationship and such that they enclose

sociated system cov'-ince matrix, which gives the a 99.9% confidence region (about four standard de-

uncertainty of each point in the map and the inter- viations) for the relationships.

dependencies of these uncertainties.

2.3 Example . ,

2.2 Interpretation Throughout this paper we will refer to a two di-

For some decisions based on uncertain spatial re- mensional example involving the navigation of a

lationships, we must assume a particular distribu- mobile robot with three degrees of freedom. In this

tion that fits the estimated moments. For exam- example the robot performs the following sequence

ple, a robot might need to be able to calculate the of actions:

probability that a ceratin object will be in its field
of view, or the probability that it will succeed in & The robot senses object #1 % %

passing through a doorway. *Terbtmvs* The robot moves.
Given only the mean, x, and covariance matrix,

C(x), of a multivariate probability distribution, the . The robot senses an object (object #2) which
principle of maximum entropy indicates that the it determines cannot be object #1.
distribution which assumes the least information is
the normal distribution. Furthermore if the spatial e Trying again, the robot succeeds in sensing ob-
relationship is calculated by combining evidence ject #1, thus helping to localize itself, object
from many independent observations, the central #1, and object #2.

D-6
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THE ROBOT SENSES OBJECT #1 AND MOVES THE WORLD FROM THE ROBOT'S NEW FRAME
Figure 2:

Figure 1: F e" . 1.

Figure 1 shows two examples of uncertain spa- variance of the system state vector, we now dis-

tial relationships - the sensed location of object cuss methods for estimating the first two moments % N

#1, and the end-point of a planned motion for the of unknown multivariate probability distributions.

robot. The robot is initially sitting at the loca- See [Papoulis, 1965] for detailed justifications of the

tion marked '0'. There is enough information in following topics. '

our stochastic map at this point for the robot to r q

be able to decide how likely a collision with the 3.1.1 Linear Relationships

object is, if the motion is made. In this case the

probability is vanishingly small. The simplest case concerns relationships which are

Figure 2 shows how this spatial knowledge can linear in the random varables, e.g.: .

be presented from the robot's new reference frame

after its motion. As expected, the uncertainty in y = ix + b, i
the location of object #1 becomes larger when it wwhere, x (n x 1) i a random vector, M (r x n) '
is compounded with the uncertainty in the robot's

motion tis the non-random coefficient matrix, b (r x 1) is

From this new location, the robot senses object a constant vector, and y (r x 1) is the resultant
random vector. Using the definitions from (1), and

#2 (Figure 3). The robot is able to determine with the linearity of the expectation operator, E, one ..-
the information in its stochastic map that this must

be a new object and is not object #1 which it o can easily verify that the mean of the relationship,
serve ealier. ot, is given by:served earlier." _.._::._

In figure 4, the- robot senses object #1 again.

This new, loop closing sensor measurement acts as Mx + b,.(,)
a constraint, and is incorporated into the map, re- and the covariance matrix, C(y), is:

ducing the uncertainty in the locations of the robot,
object #1 and Object #2 (Figure 5). c(y) = MC(x)M T . (6)

We will also need to be able to compute the co- 'leN j

3 Reading the Map variance between y and some other relationship, z,.
given the covariance between x and z: ,.

3.1 Uncertain Relationships "

Having seen how we can represent uncertain spa- C(y,z) = MC(x,z), (7) P % %

tial relationships by estimates of the mean and co- C(s,y) = C(z,x)MT.

D-7
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Th fis tw moet of the mltiait - - houg no utilze in ou aplctin.he .

tribution of y are computed exactly, given correct ond order term may be included in the Taylor series '

moments for x. Further, if x follows a normal dis- expansion to improve the mean estimate: *. i:

tribution, then so does y. ~a%.

3.1.2 Non-~nea ReltionhipsWe denote the (3 dimensional) matrix of second0

The fihst two moments computed by the formulae partials of f by FXX. To avoid uneccesary complex-
a',below for non-linear relationships on random vari- ity, we simply state that the ith element of the vec-

ables will be first-order estimates of the true values. tor produced when FXX is multiplied on the right
a'To compute the actual values requires knowledge by a matrix A is defined by:

of the complete probability density function of the f.- ,

spatial variables, which will not generally be avail- (FxxA), = trc 88 a2 _ A] .0
able in our applications. The usual approach is to IjkX*

apprximte te nn-liearfuncionThe secoiC .order estimate of the mean of y is then:

by a Taylor series expansion about the estimatedanthseodrersimeofhecviaei:
mean, *, yielding: ~

y = (*) ~ +C(y) PsFxC(x)FT - lJ~ccC(x)C(x)TFTx

where FX is the rnatrix of partials, or Jacobian, of In the remainder of this paper we consider only

f evaluated at *:first order estimates, and the symbol 'a' should .,

read as 'linear estimate of.'"

f 8(X)~. 021k OZ. 3.2 Spatial Relationships %~

a' We now consider the actual spatial relationships 'S

I ~ .. * x J which are most often encountered in robotics ap-
plications. We will develop our presentation about -

This terminology is the extension of the f. ter- the three degree of freedom formulae, since they
minology from scalar calculus to vectors. The Ja- suit our examples concerning a mobile robot. For- '.

cobians are always understood to be evaluated at mulae for the three dimensional case with six de- .

the estimated mean of the input variables. grees of freedom are given in Appendix A.
Truncating the expansion for y after the linear

term, and taking the expectation produces the lin- 3.2.1 Compounding
* ear estimate of the mean of y:

Given two spatial relationships, x,, and xjk as in

M f (*). (8) Figure 2, we wish to compute the resultant rela-
5% tionship xjk. The formula for computing xjk from

Similarly, the first-order estimate of the covariances adxjis
are:

C(y) P, FxC(x)PF 'k Xi x

C(y,s) m FxC(x,z), (9) xiA z~csn Oi + !jk CS i'j + Yi '

C(Z,y) ow C(s,x)F'. + 0.ico# I,.

D-9 ~%
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We call this operation compounding, and it is 3.2.2 The Inverse Relationship , -.

used to calculate the resultant relationship from ? .I 1two give relationships whic we arrangd head- Given a relationship xj;, the formula for the coor- "
to-tail. It would be used, for instance, to determine dinates of the inverse relationship xij, as a function

the location of a mobile robot after a sequence of of xi, is: '#
relative motion. Remember that these transfor-
mations involve rotations, so compounding is not -xi cos'i - yij sin Oi
merely vector addition. emij = i sin Oi qCosn .4,

Utilizing (8), the first-order estimate of the mean I J0j
of the compounding operation is: We call this the reverse relationship. Using (8) we

, , X:k. {Y"get the first-order mean estimate:

Also, from (9), the first-order estimate of the co- ki w e " '
variance is:

v: and from (9) the first-order covariance estimate is:

C(Xd) NJ. C(x].71) c(,,x) 1 c(xi)eiJeC(xq)J.

where the Jacobian for the reversal operation, Je

where the Jacobian of the compounding operation, is:
J9 is given by:

______ -x sn oI 5f4 -cosoij -zxii ..%

= 8xii-xj) ONxi,,xik) 0 0o = -,=[ oa1]4

-0-so , 0, ~Note that the uncertainty is not inverted, but

1 (i - zj,) Cs ik -csn3 O ] rather expressed from the opposite (reverse) point
0 1 ( xjj - mi ) s i O i c o O ii 0 . o f v iew .
0 0 1 0I 1

Note how we have utilised the resultant relation- 3.2.3 Composite Relationships
ship xjk in expressing the Jacobian. This results
in greater computational eficiency than expressing We have shown how to compute the resultant of

the Jacobian only in terms of the compounded rela- two relationships which are arranged head-to-tail,
tionships x,, and xA,. We can always estimate the and also how to reverse a relationship. With these % .
mean of an uncertain relationship and then we this two operations we can calculate ths resultant of any

result when evaluating the Jacobian to estimate the sequence of relationships.

covariance of the relationship. For example, the resultant of a chain of relation-

In the case that the two relationships being com- ships arranged head-to-tail can be computed recur-

pounded are independent (C(xi,xj,) = 0), we can sively by: P
rewrite the first-order estimate of the covariance as:

C(~k Mji.C(XY)jT* J 7e~~)~ xil = xii e Xp =~ e (Xjk XkI)

where J10 and J20 are the left and right halves
(3 x 3) of the compounding Jacobian (3 x 6): %

Note, the compounding operation is associative,
J0 [ J 2e @ ]" but not commutative.

D-1O ,
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We have denoted the reversal operation by e so to evaluate the Jacobian, much as described earlier
that by analogy to conventional + and - we may and in Appendix A.
write: It may appear that we are calculating first-order

estimates of first-order estimates of .... but actu-

x0 e xy! = x,, 9 (ex,) • ally this recursive procedure produces precisely the Isame result as calculating the first-order estimate
This is the head-to-head combination of two rela- of the composite relationship. This is in contrast
tionships. to min-max methods which make conservative es-w-%

The tail-to-tail combination arises quite often (as timates at each step and thus produce very conser- . ,
in figure 1), and is given by: vative estimates of a composite relationship. %

If we now assume that the cross-covariance terms . -.

Xik= - Xe i xck in the estimate of the covariance of the tail-to-tail
relationship are sero, we get:

To estimate the mean of a complex relationship, .)J J +
such as the tail-to-tail combination, we merely solve .(X..).tJI.J.C(Xe, * ., +J.C(Xk)

the estimate equations recursively: The Jacobians for six degree-of-freedom com- .

pounding and reversal relationships are given in

*Yk = i *il = e&i *a Appendix A.

The covariance can be estimated in a similar way: 3.2.4 Extracting Relationships ,

C(x[) C(x,) C(xi,,x) iT We have now developed enough machinery to de- - ' -
xC x~,i ) C(xi l JO scribe the procedure for estimating the relation- ..ships between objects which are in our map. The

map contains, by definition, estimates of the loca-
[ JeC(x)Je C(xiix'3) j. tions of objects with respect to the world frame;,...

L (e'.-i 4i _'.cit) Jthese relations can be extracted directly. Other
Thimehodisasytomplmena a recu relationships are implicit, and must be extracted,

This method i easy to implement as a recurtive using methods developed in the previous sections.
algorithm. An equivalent method is to precompute For any general spatial relationship among world
the Jacobians of useful combinations of relation- locations we can write:
ships such as the tail-to-tail combination by using
the chain rule. Thus, the Jacobian of the tail-to-tail Y = g(x).
relationship, *~* is iven by: The estimated mean and covariance of the rela-

tionship" are given by:
ee°  8t , -

87Xik a(xi-,xA)

* (xiYX~a) a (xi, Nia) a (Xef, Xk)
J e 0I [Jz.Je J 2 1 C(y) m GxC(x)GC. '-''-'

J t0 1
In our mobile robot example we will need to be

Comparison will show that these two meth- able to estimate the relative location of one object
ods are symbolically equivalent, but the recursive with respect to the coordinate frame of another ob- q
method is easier to program, while pre-computing ject in our map. In this case, we would simply
the composite Jacobians is more computationally substitute the tail-to-tail operation previously dis-
efficient. Even greater computational efficiency can cussed for the function g. " .,'

be achieved by making a change of variables such -"

that the already computed mean estimate is used Y = Xi= exi S X,. ,

D-11
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4.1 Moving Objects
sensor dynamics sensor"-. ,: -.
update extrapolation update Before describing how the map changes as the mo-

bile robot moves, we will present the general case,

which treats any processes that changes the state
(-) ( ) (+) of the system.

The .utem dynamics model, or process model,

Cx,(-}) CX (+ ) C(x(-)) C(x(+)) describes how components of the system state vec- Z- ,
tor change (as a function of time. in a continuous

k 1 k system, or by discrete transitions). Y-
Between state k - 1 and k, no measurements of

external objects are made. The new state is deter-

. Figure 6: The Changing Map mined only by the process model, f, as a function
of the old state, and any control variables applied

uidn th Main the process (such as relative motion commands
4 Building the Map sent to our mobile robot). The process model is

thus:

Our map rpresents uncertain spatial relation- h(... c~hips among objects referenced to a common world X{-) = f (x( +,) , (0))

frame. Entries in the map may change for two rea- rs "%
/. sons: where y is a vector comprised of control variables,

..% u, corrupted by mean-sero process noise, w, with
covariance C(w). That it, y is a noisy control inputAn object moves to the process, given by:

" New spatial information is obtained.
y = U + W.(I)..

To change the map, we must change the two com-
ponents that define it - the (mean) estimate of p = U, C(y) = C(w).
the system state vector, *, and the estimate of the %

system variance matrix, C(x). Figure 6 shows the Given the estimates of the state vector and vari-
changes in the system due to moving objects, or the ance matrix at state k - 1, the estimates are ex-
addition of new spatial information (from sensing), trapolated to state k by:

We will assume that new spatial information is -

obtained at discrete moments, marked by states , litk-1), (12)
k. The update of the estimates at state k, based
on new information, is considered to be instanta-
neous. The estimates, at state k, prior to the inte- C(X( -)) o

gration of the new information are denoted by :k-)-
and C(x(-}), and after the integration by *(+ and C(x,,) C(XYij, Y:'--

In the interval between states the system may [(+t) Cyh)
be changing dynamically - for instance, the robot

may be moving. When an object moves, we must where, 'P %

define a process to extrapolate the estimate of the
state vector and uncertainty at state k- 1, to state = ( ) .

k to reflect the changing relationships. Fxay - [ Fx Fy (x)-
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If the process noise is uncorrelated with the state, where:
then the off-diagonal sub-matrices in the matrix "
above are 0 and the covanance estimate simplifies Vit P *A , R,

to: c ),W ~ vc(X *+) )F + FC(y,_ )P
A' = C(x'j) N J16C(xR)JT. + J2eC(yR)3., 2.r.

The new state estimates become the current esti- ,
mates to be extrapolated to the next state, and so

on. ~B = C~xR,X) PS JIOC(X t,X-). -In our example, only the robot moves, so the pro-'-- s.C",,

ces model need only describe its motion. A con-
tinuous dynamics model can be developed given a A' .. e.
particular robot, and the above equations can be re- certainty in the new location of the robot. B' is
formulated as functions of time (see [Gelb, 1984). a row in the system variance matrix. The ith el- ,.% *.JS

However, if the robot only makes sensor observa- ement is a sub-matrix - the cross-covariance of
ions at discrete times, then the discrete motion the robot's estimated location and the estimated %
po ati is quite adequate, location of the ith object, as given above. If the
approxiti o mestimates of the two locations were not depen-
When the robot moves, it changes its relation- dent, then that sub-matrix was, and remains 0. .... .-

ship, xR, with the world. The robot makes an un- The newly estimated cross-covariance matrices are . V
certain relative motion, YR - uR + wR, to reach a t:ansposed, and written into the Rth column of the
final world location x'R. Thus, system variance matrix, marked by B 'T.

Only a small portion of the map needs to be 4.2 New Spatial Information .....'. .. +

changed due to the change in the robot's location The second process which changes the map is the
from state to state - specifically, the Rth element update that occurs when new information about
of the estimated mean of the state vector, and the the system state is incorporated. New spatial in-
Rth row and column of the estimated variance ma- formation might be given, determined by sensor
trix. Thus,*() becomes*(-) measurements, or even deduced as the consequence

of applying a geometrical constraint. For example,
placing a box on a table reduces the degrees of free- " ,;

dom of the box and eliminates the uncertainties in " -
tf(+_) (- the lost degrees of freedom (with respect to the ta- . .

ble coozdinate frame). In our example, state infor-
mation is obtained as prior knowledge, or through

Jmeasurement. %
analogously, C( )' becomes: There are two cases which arise when adding new, U-an, nalogousl~y, | ()bcms

spatial information about objects to our map: ,

eI: A new object is added to the map,
SB # A ' 4.%t

Cfx( 1 -) B II: A (stochastic) constraint is added between
objects already in the map.

We will consider each of these cases in turn. E li
D-13
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4.2.1 Case I: Adding New Objects where A is a covariance matrix, and B is a row
of cross-covariance matrices, as before. B is iden-

When a new object is added to the map, a new tically 0, since the new estimate is independent of
entry must be made in the system state vector to the previous estimates, by definition.
describe the object's world location. A new row Case Ib occurs when the world location of the
and column are also added to the system variance

matrix to describe the uncertainty in the object's new object is determined as a function, g, of its spa-
estimated location, and the inter-dependci of tial relation, z, to other object locations estimated
this estimate ct stimated locations of tt-er of- in the map. The relation might be measured or

thi esimae wth stiate loatins f oherob-given as prior information. For example, the robot
jects. The expanded system is:.. ,.

measures the location of a new object relative to
itself. Clearly, the uncertainty in the object's world "" "

location is correlated with the uncertainty in the --

- robot's (world) location. For Case I-b:

- I g-, z),
r ni I %"- Z, +1 = xs)"""

A = CC( xx +) B T ...=( 1 4 ).
. BC(x+ GxC(x)GT+GyC(z)Gy, (14)

where Z+, A, and B will be defined below. Bi -

We divide Case I into two sub-cases: I-a, the B = GxC(x).

estimate of the new object's location is independent is the case of Case
of the estimates of other object locations described We see that Case I-a special
in the map; or I-b, it is dependent on them. I-b, where estimates of t' e world locations of new

-Case I-a occurs when the estimated location of objects are independent of the old state estimates

the object is given directly in world coordinates .and are given exactly by the measured information.
i.e., , and C(x,,..) - perhaps as prior infor- That is, when:
mation. Since the estimate is independent of other
location estimates: g(x, Z) = S.

Xf+i -x=ew, 4.2.2 Case II: Adding Constraints -

When new information is obtained relating objects
: =n +, already in the map, the system state vector and

variance matrix do not increase in size; i.e., no new
elements are introduced. However, the old elements

A = C(x ,i) = , (13) are constrained by the new relation, and their val- %
ues will be changed.

Bi -C(x,+i,x) = C(x,.,,,x) = 0. Constraints can arise in a number of ways:

D-14
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" A robot measures the relationship of a known where:
landmark to itself (i.e., estinates of the world ah(X)
locations of robot and landmark already exist). ]x x

" A geometric relationship, such as colinearity The formulae describe what values we expect
Age t i r tin f soe s ofe, from the sensor under the circumstances, and the

coplanarity, tc., likely variation; it is our current best estimate of
object location vauiables, the relationship to be measured. The actual sensor "'

values returned are usually assumed to be condi-
In the first example the constraint is noisy (be- tionally independent of the state, meaning that the

cause of an imperfect measurement). In the sec- noise is assumed to be independent in each mea-
ond example, the constraint could be absolute, but surement, even when measuring the same relation
could also be given with a tolerance. with the same sensor. The actual sensor values,

Then is no mathematical distinction between corrupted by the noise, are the second estimate of

the two cases; we will describe all constraints the relationship.
as if they came from measurements by sea- For simplicity, in our example we assume that
sors - real sensors or pseudo-sensors (for geo- the sensor measures the relative location of the ob-
metric constraints), perfect measurement devices served object in Cartesian coordinates. Thus the
or imperfect. A pseudo-sensor which measures sensor function becomes the tail-to-tail relation of
arectangular-ness' is discussed later in the exam- the location of the sensor and the sensed object.
ple. described in Section 3.2.3. (Formally, the senso:

When a constraint is introduced, there are two function is a function of all the variables in the state %-IV

estimates of the geometric relationship in question vector, but the unused variables are not shown be- ',. 
- our current best estimate of the relation, which low):
can be extracted from the map, and the new sensor
information. The two estimates can be compared a = xo. ear, xi. .,I .
(in the same reference frame), and together should L..

allow some improved estimate to be formed (as by ..=,ez 0 ..a veraging, for intaace). f ;=e*, 9 Ii. S'";++

For each sensor, we have a sensor model that ".
describes how the sensor maps the spatial variables r C(Xi) C(xixi) 1 T
in the state vector into sensor variables. Generally, C(x,,x,) qxy) " " ."

the measurement, z, is described as a function, h, of
the state vector, corrupted by mean-sero, additive Given the sensor model, the conditional esti- %. N

noise v. The covariance of the noise, C(v), is given mates of the sensor values and their uncertainties,

as part of the model. and an actual sensor measurement, we can update
the state estimate using the Kalman Filter equa-

Sh(x) + . (15) tions [Gelb, 19841 given below, and described in . r ?. ,

the next section:

The conditional sensor value, given the state, = + 1, -

and the conditional covariance are easily estimated .k.k.k

from (15) as:
J. hl~fi:). C(x( +')) C(x(-)) - Ki-HxC(x(--, (16) "

- C() T FEC~x(-hET + C(V)A1 1

C(s) m HxC(x)Hx + C(v), K - L(X ) HXC(X- + j -

D-15
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4.2.3 Ralman Filter If the functions f and h are non-linear in the
state variables, then F and H will have to be eval-

The updated estimate is a weighted average of the uated (they are not constant matrices). The given
two estimates, where the weighting factor (com- formulae then represent the Extended Kalman Fil-
puted in the weight matrix K) is proportional to ter, a sub-optimal non-linear estimator. It is one
the prior covariance in the state estimate, and in- of the most widely used non-linear estimators be-
versely proportional to the conditional covariance cause of its similarity to the optimal linear filter, .

of the measurement. Thus, if the measurement its simplicity of implementation, and its ability to
covariance is large, compared to the state covari- provide accurate estimates in practice.
ance, then K -. 0, and the measurement has little T o hnde
impact in revising the state estimate. Conversely, The error in the estimation due to the non-

when the prior state covariance is large compared linearities in h can be greatly reduced by iteration,
to the noise covariance, then K -. 1, and nearly using the Iterated Extended Kalman Filter equa- AN
the entire difference between the measurement and tions (Gelb, 1984J:

its expected value is used in updating the state.

The Kalman Filter generally contains a system Al, +1 k 01
dynamics model defined less generally than pre-
sented in (10); in the standard filter equations the
process noise is additive: + KA. s - (hA, (*,)) + HxJ,

c-) )
x -) =f U 1 )+WU- 1  (17)+W-

in that case Fy of (10) is the identity matrix, and C(x,+.) C(x( -) - ki"HxC(xk-),

the estimated mean and covariance take the form:

40 f (*k(+- , U&- ), (18 K, C(xV)HBX [EHcC(x)H +

where:
C(Xj -) go FXC(xj(+))FT +Cwa)

If the functions f in (17) and hi in (15) are lin- , 8h.)(*;)
car in the state vector variables, then the partial
derivative matrices F and H are simply constants, '

Nland the update formulae (18) with (17), (15), and(+
(18), represnt the Kalnan Filter [Gelb, 19841. Jk.O =i

If, in addition, the noise variables are drawn from Note that the original measurement value, z, and . .

normal distributions, then the Kalman Filter pro- the prior estimates of the mean and covariance of
dcsthe optimal ininsimumarin ance BayesiGn e8, the state, are used in each step of the iteration.

timate, which is equal to the mean of the a pos- The ith estimate of the state is used to evaluate the ~
tenion conditional density function of x, given the weight matrix, It, and is the argument to the non-
prior statistics of x, and the statistics of the inea- linear sensor function, h. Iteration can be carried
surement z. No non-linear estimator can produce out until there is little further improvement in the%
estimates with smaller mean-square errors. estimate. The final estimate of the covariance need

If the noise does not have a normal distribution, only be computed at the end of iteration, rather%
then the Kalman Filter is not optimal, but pro- than at each step, since the intermediate system i ' ,

duces the optimal linear estimate. covariance estimates are not used.

.,-- ..
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5 Developed Example
The methods developed in this paper will now be x = R [

applied to the mobile robot example in detail. We L1 J '

choose the world reference frame to be the initial Io-r C(xR) C(XR,X1) 1
cation of the robot, without los of generality. The C(x) = C[ x x C J
robot's initial location with respect to the world R, Cx) .
frame is then the identity relationship (of the com- r C(yR) 0 1 ;
pounding operation), with no uncertainty. 0 C(s) ].

We can now transform the information in our ' -
*iR [01 , map from the world frame to the robot's new frame

to see how the world looks from the robot's point
C~x) = (~xR~ = 01.of view:

Note, that the normal distribution corresponding
to this covaiance matrix (from (4)) is singular, but *RW eR,
the limiting case as the covariance goes to zero is a C(XRw) JeC(xR)Je.

dirac delta function centered on the mean estimate. N, -
This agrees with the intuitive interpretation of sero 'I

covariance implying no uncertainty.

Step 1: When the robot senses object #1, the -*RI = e*t 9.
new information must be added into the map. C(xRL) f Ji.JoC(xR)JJT

Normally, adding new information relative to the + j10C(x1 )JT."
robot's position would fall under case I-b, but since
the robot's frame is the same as the world frame, it Step 3: The robot now senses an object from
falls under case I-a. The sensor returns the mean its new location. The new'measurement, 12, is of
location and variance of object #1 (11 and C(s1 )). course, relative to the robot's location, xR.
The new system state vector and variance matrix
are:

r 1 it 0 * = 1~i * 13R I't(D2
I [ r C(XR) C(XR,XI) C(XR.X 2)1

[(X C(XR) C(XR.Xl) 1 C(x) = C(XI,XR) C(XI) C(XI,X2)
C(x&,x ) C(X1) C(x 2,xR) C(x 2 ,x1 ) C(x2 )

0 r 01 C(YR) 0 C(yR)jT1
0 C(SO)I - 0 C(31) 0 ]J1OC(yR) 0 C(x2 )

where x, is the location of object #1 with respect

to the world frame. where:

Step 2: The robot moves from its current loca-
tion to a new location, where the relative motion C(x2 ) Jb.C(yR);JT. + J 2*C(X2 )J..-
is given by YR. Since this motion is also from the
world frame, it is a special case of the dynamics Step 4: Now, the robot senses object #1 again.
extrapolation. In practice one would probably calculate the world
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FOUR UNCERTAIN POINTS APPLYING THE RECTANGLE CONSTRAINT-

Figure 7:

%

location of a new object, and only after comparing In this case, we need a pseudo-sensor which Z-.e_
the new object to the old ones could the robot de- measures the 'rectangularity' of four points - 1 % %
cide that they are likely to be the same object. For x4, x,xh,x1, labeled counter-clockwise from the
this example, however, we will assume that the sen- lower-right c.rner: - -
sor is able to identify the object as being object #1 , .
and we don't need to map this new measurement
into the world frame before performing the update. %

The symbolic expressions for the estimates of the [i - Zi + Zk -- 11
mean and covariance of the state vector become = - y" + Ik -t j
too complex to reproduce as we have done for the (z - z)(z - Z) + ( - )( yk- W)

previous steps. Also, if the iterated methods are %

being use4, there is no symbolic expression for the ,
results. The first two elements of x are zero when oppo-

Notice that the formulae presented in this section site sides of the closed planar figure represented by,-
are correct for any network of relationships which the four vertices are parallel; the last element of I N1.
has the same topology as this example. This pro- z is zero when the two sides forming the upper- Ad 6
cedure can be completely automated, and is very right corner are perpendicular. Given four esti- -  "
suitable for use in off-line robot planning. mated points, the prior conditional value of z and

the estimated covariance can be computed. The
As a further example of some of the possibilities- t i d a n c.

of this stochastic map method, we will present an new information - the 'measurement* returned

example of a geometric constraint - four points by the pseudo-sensor - will be drawn from a dis- . .

known to be arranged in a rectangle. Figure 7 trbution with mean 0 and covariance determined

shows the estimated locations of the four points by how much tolerance in the urectangularity" pa- 4.'.. .

with respect to the world frame, before and after rameters is acceptable. In fact, if we are going to ."

introduction of the information that they are the impose the constraint that the four points are pre-
vertices of a rectangle. The improved estimates are cisely in a rectangle - i.e., there is no measurement

overlayed on the original estimates in the 'after" noise, C(v) = 0 - then we can choose h to be any

diagram. We model the rectangle constraint as we function which is zero only when the four points

would any other sensor (with mean-sero noise): are in a rectangle. If, however, we wish to impose
a loose rectangle constraint, we must formulate the
function h such that z is a useful measure of how N

z = h(x) + v. the four points fail to be rectangular.
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6 Discussion and Conclusions For example, if the noise term in a camera model
is too large, the observed errors will be smaller on

This paper presents a general theory for estimating average than expected. Adaptive filtering methods ar J
uncertain relative spatial relationships between ref- can be incorporated into the methods described to
erence frames in a network of uncertain spatial rela- improve model estimates.

tionships. Such networks arise, for example, in in- Although the examples presented in this paper
dustrial robotics and navigation for mobile robots, have been solely concerned with spatial informa- ,
because the system is given spatial information in tion, there is nothing in the theory that imposes
the form of sensed relationships, prior constraints, this restriction. Provided that functions are given :. 's.. .
relative motions, and so on. The theory presented which describe the relationships among the compo-
in this paper allows the efficient estimation of these nents to be estimated, those components could be
uncertain spatial relations. This theory can be forces, velocities, time intervals, or other quantities
used, for example, to compute in advance whether in robotic and non-robotic applications. A
a proposed sequence of actions (each with known
uncertainty) is likely to fail due to too much ac-
cumulated uncertainty; whether a proposed sensor
observation will reduce the uncertainty to a toler-
able level; whether a sensor result is so unlikely ___

given its expected value and its prior probability of
failure that it should be ignored, and so on. This
p Lper extends the theory of state estimation to in-
ciude information in the form of uncertain spatial
relations between many different frames. % 1% 1*

The estimation procedure makes a number of as-
sumptions that are normally met in practice. These
assumptions are detailed in the text, but the main*. .

assumptions can be summarized as follows: .

The angular errors are *small'. This require- %

ment arises because we linearize inherently
nonlinear relationships. In Monte Carlo sim-
ulationsjSmith, 19851, angular errors with a
standard deviation as large as 5o gave esti- P- P

mates of the means and variances to within
1% of the correct values.

F.timating only two moments of the proba-
bility density functions of the uncertain spa- .
thai relationships is adequate for decision mak-
ing. We believe that this is the case since
we will most often model a sensor observation
by a mean and variance, and the relationships
w'ich result from combining many pieces of in-
formation become rapidly Gaussian, and thus
are accurately modelled by only two moments.

The theory presented in this paper can be ex-
tended to adaptively improve the models it uses.
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Appendix A > 4
Earlier in this paper we presented formulae for computing the resultant of two spatial relationships ,
in two dimensions (three degrees of freedom). In three dimensions, there are six degrees of freedom:
translations in z, y, z and three orientation variables: 0, e, 0. There are two common interpretations of
these orientation variables-Euler angles and roll, pitch, and yaw, defined below.

Euler Angles -

Euler angles are defined by:

Euler(,, 0, ib) = Rot(z, O)Rot(y', 8)Rot(z", #) "

The head to tail relationship is then given by:

X3

Y34

xs 3 = [s TE, . /
X3 %?4)3 .. ... ;.

03 A

% %a

where TZ and A are defined by:

X2 1 Z1 atan2(a 3, ,)
T R + Y1 A = atan2 (a.. cos 3 + a sin 0, a,

2 Z a tn2(-n. Sin 3 + n,.o COS03, -o, sin 03 + o, cos 03

where R, is defined below and a., etc. are the corresponding elements of the compound rotation matrix
R3 , defined by RL3 = R1 R2 . Note that the inverse trignometric function atan2 is a function of two .J%0.
arguments, the ordinate y and the abscissa z. This function returns the correct result when either x or. %
y are sero, and gives the correct answer over the entire range of possible inputs [Paul, 19811. "

The Jacobian of this relationship, 3, is:

& X 3  - [ 13x 3 M RB~EW, 0 3x31 , ,:

(xix 2) L 0 x3 K, Ox3 K2

S -(Y3-te) (Z3 -ZI) C0(01) O.zi 2 - nxy21= Z3 - - I ( Z3 - ZI) in (0d o,) Oy - ,, y2 ,,:
0 -z cos9 1 cos 1 + y2 cos0 sin 0 1 - z2 sin01  O 1X2 - n,Iy2

II

flu, ox, a.
R 1j[= i,, 

0 
v| ", Gy P, ,' .
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cosi 0 o 1 cos io sinn~ si , -1 ct sin 4,1 ]o 8

1 [C503inW 41u/B nO3 sin4; C0(3se2)/Si6

0+i 0 )/i 3 (i 1COS(4 1o) 1 Siin n6 $3

[sn 1C0(3 1)/ sins sin(0 2co j si 13
K2 Si 02 in(sine 22 CS(4;s 42) 0

[sin$, COS(#3 - 01)1/ sin 03 (CS sin (03 0 4 2 )/ Sin 3  1

The inverse relation, x', in terms of the elements of the relationship x, using the Euler angle definition,%

ZI -n.,x+ n,~Y + n~z)

Y, -(;xz + OVY + O.z)
X, -(.Iz + a~y + a,z)

where n.ec r h lmnsof the rotation matrix Rdefined above.

% .P

rnvz - n -nzcoa - n~ysinO zcos~cosO 12 ,Y+OZ

N= oz - OgY -o,,zcos - o~ysinO~-xcoslsin4, -[n~z-in~y+n~zJ ,[ayz - ay -a~x Cos 4- a,ysin 0+ zsin 0 0

Roll, Pitch and Yaw Angles -.

Roll, pitch, and yaw angle. are defined by: .

RPY(O, 0,4;) =Rot(z, O)Rot(yf, )Rot(z", 4;)

The Jacobian of the head-to-tail relationship, with roll, pitch, and yaw variables is given by:

= X 0x3X32 [ Mx~ RRPY 0~33
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r-(Y3s -I) (Z3 -ZI) COS(0) a.21  Oz, 02i2
M= 3 - (z3 z) sin( bI)ayY2-O Z

0 -X2 COS 0 1 - y2~ sin 01 sin 'P1 - z2in 01cOs 01 a, y2 - Ox, Z2 *'

I = llui ox, axl

Cos 1 Cos 1 Co 01 in elsin 'Pi- sin 01Cos 0 Cos 0sin81 Cos 01+ sin 01 in 01
sin,0icosO, in snji~ +cos# 1 cosPj sinoisin61 cosol-oslsn ]

I jsin#a Sin(0 3 - 1)j/ COB 3 Lozz sinfl'3 + G COS0'3]/ COS 63

01 =COS(0 3 - 01) cos 01 sin(03 - 01)L0 [sin(03 - O1)1 C03 [COS 01 COS(03 #11/ COSS63

[COS 02 COS (03 - 02)1/CO co3 6 ( sin('P3 - 0P2)/COS 03 0

ACO K2 =co2 sin(03s-0'2) COS('P3 - 0P2) 0
R2 [a., COS o + a., Sin 031/ COS 03 tsinh6 sin(iPa P/o 3 1

Note that for both definitions, the Jacobian has been simplified by the use of final terms (e.g. X 3 , 'Ps).
Since the final termns are computed routinely in determining the mean relationship, they are available
to evaluate the Jacobian. Examinaticz of the elements indicates the possibility of a singularity; as the

mean values of the angles approach a singular combination, the accuracy of the covariance estimates
using this Jacobian will decrease. Methods for avoiding the singularity during calculations are being r -

explored.b
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ABSTRACT

An object being grasped by a robot may not be precisely aligned with the

robot's hand. What is worse, identical objects that are grasped repeatedly during

an automatic assembly procedure may vary frequently in their in-hand location. "

for instance, even if identical pegs are grasped, discrepancies in their locations in

the robot's hand will prevent proper insertion of the pegs into the designated

fixture holes.

.7

Practical methods are described for calculating misgrasp location relative to *'. .

ideal grasp location without any need for the complexity of geometric modeling . " "

and computation. A least-squares-error method and converging process are

employed. The latter consists of an iterative scheme of "measure (picture-taking),

compute, and move." This is done to reduce gross misgraspings (30-mm

translation in plane and 15 rotation about the normal) to relatively small

deviations of fractional millimeters and degrees from a normal ideal-grasp

a l i g n m e n t . - '

The algorithm relates changes in the geometric features of a binary image to 4

changes in )osition (x,y) and orientation (rotation about the normal) of an
P

object. During training, known positional and orientational perturbations are

applied to a reference object (prototype) to establish the correspondence between

these two categories of changes. The location of the prototype in the robot's hand

is consi(lered as a reference location. About fifteen geometric features of the

object's windowed picture that are sensitive to positional and orientational
P

changes are used. The misgrasp location of the trained object is computed in

Cartesian (4 x 4 matrix) transformation form. This transformation, called DIFF, is . ' '--.

used to compensate for the robot's fingertip location for each grasp, in world

coordinates, such that the object will be located repeatedly and precisely in the ' "- "+'

same ideal grasp location. This is achieved simply by multiplying the fingertip 0-0.01

training transformation by the DIFF transformation. As for the example above, J-%

it locates the pegs repeatedly for each grasp such that the robot will be able to , . _

insert each peg precisely into a hole.
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I INTRODUCTION

So far, the sensory capability of typical robot hands is not even close to that

of human hands. A robot's hands, for example, cannot measure part slippage

while actually holding a part. One must also consider the locational error of the

robot hand servomechanism in object manipulation. This error combined with

the relative error of the object held, may make it impossible for the robot's hand

to mate that object with a second object in a known location (e.g., in a fixture). --

To overcome this problem, we must "measure" the location of the held object I

relative to other objects (e.g., to the fixture). One way to perform such

measurement is to bring the grasped object to a fixed location ("viewpoint")

under a camera, measure the object's binary-image features, and compare them

with those in a reference location, thus obtaining the locational error of the

object.

Although this approach is applicable to general error detection and

correction within six degrees of freedom (x, y, z, 0 z, A Tx), this paper deals with
error measurement and correction in only three degrees of freedom--x, y, and O.

The results nevertheless have practical application because a typical robot hand

consists of two parallel planes that constrain the errors in the grasped object to

only three degrees of freedom, arbitrarily assumed to be along x, y, and 0.

Our method minimizes the difference between the changes in the image

features and the normalized (x, y, Oz) errors by using least-squares fitting. We 1 r

use linear approximation for the relationship between (x, y, O) errors and the

corresponding changes in the image features (area, perimeter, radii, movements,

and so on). Therefore, our technique is iterative and is limited to small grasping

errors (e.g., ± 30 mm in x or y and 4: 15" in O).

E-1 1 . .
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H OBJECT LOCATION IN A ROBOT'S COORDINATE SYSTEM

Three coordinate frames of the robot system are defined in Figure I-R %

(robot frame), H (hand frame), and C (camera frame)-such that T is translated s',.

(not rotated) relative to R and the principal ray of the camera is normal to the x-

y plane of R. In Figure 2 we define a coordinate frame 0 attached to the object .-....

such that its x and y coordinates are parallel and collinear with x and y of the N.,"% .,.". .. .

hand frame, respectively. We also define the z axis of the flange frame to be

collinear with the y axis of the hand frame, and denote the distance between the

flange frame origin and the hand tip by z hand.

Let rr. view, (Tflange) view, and Thand denote the arm-to-hand, arm-to-

flange, and flange-to-hand coordinate transformation [Paul (1981)], -v4-

(iTh)view =(Tiange )view * Thand

Figure 3 shows five coordinate frames:

* Arm frame R. e,,.

* Hand reference frame H, defined during a training procedure (to 01
be described later).,.." 4. '. -

e Object reference frame 0, also defined during the training
procedure.

* Object frame 0', which is attached to the grasped object in its ..... "

actual, erroneous location.
.,' o"'

* Hand frame It', which is reached after successive arm motions (to
be described later) until frame 0' converges upon and then .. 4.4..,

overlaps frame 0.

*.4 -.-
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FIGURE 3 COORDINATE FRAMES OF R, H, 0, AND H' AFTER ALIGNMENT
OF FRAME 0' WITH FRAME 0 "

Denoting a general transformation from frame F1 to frame F2 by [FI/F2]

ISmith and Nitzan (1983)], and denoting [H'/H by DIFF, we obtain

DIFF = [R/H']' 1 [R/Hj ,

Since we have assumed that the errors in the grasped object are constrained to be

only along x, y, or O, we obtain [Paul (1081)-

E-15 .
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cos dO z -sin dO. 0 dx

sin dO z cos dO. 0 dy
DIFF-

0 0 1 0

0 0 0 1

where dx, dy, and dO are the differences between the corresponding (x, y, 0) -

values of frames H and 1t'.
,% %

DIFF values are computed for an array of (dx, dy, dO1) values by grasping

the object in different locations. These DIFF values are stored and then applied

in the following way to correct for the corresponding grasping errors. The robot

hand holding the object is moved to the reference location H underneath a sensor ,

to the place where the training procedure has been performed. The sensor data

are processed (as will be described later) to obtain the corresponding DIFF value.

The resulting DIFF value is then used to offset the next hand transform, [R/H]act,

when an action would normally occur if there were no grasping errors, by

multiplying [R/Il]act by DIFF. For each grasp j we correct [R/H1at as follows:

[R/Hicacti---[R/H]It DIFFj .

Iz

II'

li. , .

6 W-N., 4.
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III IMAGE PROCESSING

A. Global and Local Features

We use a binary visual sensor to measure the object's image features and

correlate them with the value of DIFF. Two types of image features are

distinguished: global [Gleason and Agin (1970)) and local [Bolles and Cain (1982)].

I 1. Global Features

Global features are those that can be obtained from the image when the

entire object is visible and not touching any adjoining objects. In the calculation

of global features, the object is assumed to be rigid. Global features are

* computed from the outline of an object, not from the regions enclosed within that

outline.A

4 (~Global features may be classified according to their dependence on the

position and orientation of an object. A few examples are given below.

a. Independent Global Features
Some commonly used features that are independent of position and

orientation are

0~ " NCELLS--Number of pixels in the blob

" PERIMETER--Perimeter of the blob ~zA

" MAJOR--Length of major axis of the best-fit ellipse*

" RMIN--Tle minimum radius from the centroid to the perimeter.

" HOLERATIO--Ratio of the holes area to the total area.

The best-fit ellipse is determined by finding an ellipse whose second moments are equal to those
of the blob.

7
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b. Dependent Global Features ;.

Some commonly used features that depend on position and orientation are

* XNIIN--Tbe minimum x image coordinate of the blob%

Nib .~

e XMAX--The maximum x image coordinate of the blob

* XPERIM-The fraction of the perimeter in x direction

* YPREIM--The fraction of the perimeter in y direction

* XCENT-The x coordinate of the blob's centroid

* YCENT--Trhe y coordinate of the blob's centroid

e THETA-The angle of the major axis of the best-fit ellipse

* X1)IFF--The width of the blob in the x direction 0

* YDIFF'--Tbe height of the blob in the y direction

9 CGDIST--The absolute distance of the blob's centroid from the
origin -

* SIGXX--Summation of x squared

e SIGXY--Summation of x * y

4 * SIC YY--Summation of y squared.

5' Because the above features are independent of position and/or orientation,

they are most useful in eliciting the information necessary for determining object

locat ion in robotic applications.

8 Z:
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2. Local Features WOO

Local features are image features that can be detected in a small window; % -

e.g., small holes, corners (concave and convex), and the like. A matching method,

called the Local-Feature-Focus Method, has been explored and developed to .

efficiently locate partially visible, two-dimensional objects [Bolles (1082)]. This.

approach is applicable to the recognition and location of complex industrial parts - .

that may contain multiple occurrences of local features. The matching process is

robust because it bases its decisions on unique clusters of features; it is also

relatively fast because it concentrates on the most distinguished features, which

are selected automatically.

B. Geometric Features for Determining Object's

Location in a Robot's Hand

The problem we are dealing with here is that of determining, on the basis of

an object's binary image, the location of that object as it is being held in a robot's

hand. The use of global features is ruled out because the object is only partially

visible. The use of local features is also excluded because there may not be

(nough (f thewm to locate the object. To surmount these obstacles, we use the

ethod dtcscriled below. -'-

The image seen by the TV camera includes an image of the robot's hand.

Since the latter image is unwanted, we "cut it off" by defining a window that

includCs only a portion of the object's image; we then measure the global features

(f I liat port ion. Since the object is only partially viewed, all these global features

may vary as the object's location varies under a fixed camera and are thus

sensitive to the object's position and orientation. Finally, we use a Jacobian

(called sensitivity matrix) that ascertains the correspondence between the object's .-.-

locational perturbations and the resulting changes in the values of the global

features (see Section IV).

% 
e
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Incidently, the foregoing method may also be used to inspect the shape of an

commensurate variation of the object's global features.

As will be described and explained in the next section, the sensitivity matrix

is constructed experimentally by perturbing the object sequentially along each of "

the three degrees of freedom (x, y, and Oz), one at a time, and computing the

blob's feature variations divided by the amount of the corresponding

perturbation.

Fifteen global features have been selected according to two criteria:

* Maximum sensitivity to object location

* Feature independence.

Figure 4 shows the resulting 15 x 3 sensitivity matrix, classifies the selected b"A,

15 features according to their locational sensitivity, and lists their code numbers

in the SRI vision module.

A mathematical model is required to convert the geometric-feature changes

into locational changes. In addition, an algorithm for using this model is needed.

The next section describes both the required mathematical model and the

corresponding algorithm.

, *-, *.*.
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Feature Code Feature
in SRI 

SensitivityVision Module Feature Derivitives Classification

(8) dNCELLS dNCELLS dNCELLS

dX dY dO2

(88) dPERIH dPERIH dPERIM
-- --- Position- and
dX dY dO orientation-

4, sensitive
(76) dMAJOR dHAJOR dMAJOR (because of

-.. Image vindowing)
dX dY dOz

(80) dMINOR dMINOR dMINOR

dX dY dO2  % _

(84) dTHETA d HETA dTHETA %

dX dY dO-

(168) dXDIFF dXDIFF dXDIFF

(36) dXPERIM dXPRIM dXPERIM %

---- Orientation-
dX dY dOz  sensitive

(160) dYDIFF dYDIFF dYDIFF

---- --- - ---

dX dY dOz  ..

(40) dYPERIM dYPERm dYPERIM . .

dX dY dOz

(68) dYCENT dXCENT dXCENT

.... sens tive • '-

dX dY dOz  .2

4.(72) dYCENT dYCENT dYCENT Position-
--- ------ ___ sensitive.

(188) dCGDIST dCGDIST dCGDIST ' 4,

dX dY doz  .%..

(52) dSIGXX dSIGXX dSIGXX "- .' "-

dX dY dO-

Position- and(56) dSIGXY dSIGXY dSIGXY orientation- ".'A. 4'.
-------- ------- -------- sensitive

dX dY dOz  N
(60) dSIGYY dSIGYY dSIGYY 

.1

dX dY dO2  _____

FIGURE 4 SENSITIVITY MATRIX OF GLOBAL FEATURES "

%
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IV MATHEMATICAL MODEL AND ALGORITHM a A

A practical method for computing the location of an object is described in

this section. It converts geometric features of an object's image into an object

location vector based on a linear mathematical model that is calibrated

empirically. This technique does not require the complexity of geometric

modeling and computation. The model is essentially linear for small deviations %

from an object's prototypical training location. The proposed algorithm

employing this method enables the robot to attain the desired location so that the

grasped object's location will coincide with that of the prototype. ,.: *.

A. Mathematical Model

Several geometric-feature changes in an object's image can be used to

determine the three-dimensional position and orientation of that object. For

sufficient information to be provided, the number of feature perturbations must

be greater than or equal to the number of parameters to which the system is

sensitive. In the case of the locational sensor, the number n of features measured

must in general exceed 6, because a larger number of features is likely to increase -

the prolability that every locational dimension will be well represented. '0 '
•r iq

The i features that. are dependent on position and orientation can be

described as components of a feature eigenvector

*- = .......... f 1

The location of an object in the robot's frame can be described by the

vector

0.

13
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P =X y, "-, ,AT

The casual relationship between the feature eigenvector and the location vector

may be expressed by

t= T(P) ,

where T represent a nonlinear transfer function with multiple inputs and outputs.

To provide an algorithm that will compute an object's location from the feature .

eigenvector, we have to invert the T(P) form. We can use empirical calibration to

produce a linear approximation of the function T(P), then utilize it as a tool for

controlling position and orientation.

We assume that, as a function of position and orientation, all the features

will be continuous, as will the first derivatives. Let us denote the reference p
location by

P0-- (xO,yO,zO,O 0,AyO,Tx0)
Z Y .

The corresponding location of the sample object defines the reference feature .

eigenvector as follows:

fO = T(PO) - (f01,f02,f03 ...... f0)

The nonlinear transformation T(P) is dependent on many parameters, such as an

object's geometric shape, the reference position of the sample object relative to

camera coordinates, the kind of independent feature groups that have been

computed, etc. Hence, as a first step of approximation, the location vector P will

be obtained for small locational variations. Since we have restricted ourselves to .5

small deviations, we can assume that the transformation of an object's location to

its image features is linear; for a given P near P0, we may use the approximation

:. . :
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dT
*(P-,O) r0

dP PO

Denoting the Jacobia.n matrix of the function T, evaluated at the reference
location, by S we can write

F=fo + S*(P O)

Ssymbolizes the sensitivity matrix (see Section I).

S is computed during the training (i.e., calibration) procedure, one column

at time. This involves moving the robot's hand tip a small distance Dx, Dy, and .

Dz relative to the object's reference position and, in the same manner, rotating

the hand tip by small angles DO, DAy, and DT x. Meanwhile, the variations in _ -

image features are computed and recorded, after which the following sensitivity

matrix is constructed: ."

dfI dfr df 1 df df df Df1 Of1 Df1 Df1 Df Dft .4

dx dy dz dOz dA dTx  Dx Dy Dz DO DA DT'

df2 df 2 df2 df2 df2 d2 2  2 Df D 2 Df2 Df2 Df2 -.

dx dy dz dO dA dT Dx Dy Dz DO DA DT

dfn dfn df, df, df, dfn  Of. Df. Dfn Dfn Dfn Dfn

~% %

dx dy dz dO1 dA dT1  Dx Dy Dz DO1 DA DTx
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Image features differ in their positional sensitivity according to object shape.
0- r' .Therefore, the use of redundant independent features would improve the response

of the Jacobian S to a large variety of object shapes. It also is well known that, if . '

the data points are independent and spread randomly, then the more of them

there are (features, in our case), the better will be the estimation. It is the . -.

locational coordinates [Nahi (1976)] that we are estimating in this instance.

Because the number of image features exceeds the number of the required

locational coordinates, of which there are three (x, y, Oz) in our application, S will

became rectangular, thereby precluding the inverse of S. This means that the

locational vector cannot be solved directly by the multiplication of S- 1 * O j

instead, a pseudoinverse of S must be used. Letting " "

f, i- To

r =rPO i

we are actually trying to solve the following overdetermined equation system, ".r "

which does not have a unique solution:

Pys 4-

S * Pa' U 4.4

fn
'be . . .. . ... .. . ..

'F ... . -' .

z-'-%. .

d*#e PX". %4 -P"
% .%. -
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A location Pc' can be found such that the computed product S'Pc' fits the

measured/computed feature f optimally. The residual vector R is defined by

R ,-S*!

where -c'is the computed location vector. Since minimizing the normal of the

residual is the same as minimimizing the squares of R components, R is simply a

least-squares fit of the locational parameters to the redundant image features,

(f"- S * Pc)T*(- S*Pc') > min.

The foregoing is like computing a plane that fits data containing more than

three points as well as possible. The more data points are given, the better the

estimated plane. The goodness of the fit is measured by the minimal sum of

distances of the points from the plane. In our case, however we are dealing with

imawe features rather than points in a Cartesian-coordinate system; the desired

product here is a three-dimensional locational vector. The solution (see [Strang

Pc'= (s *)4 * sT * '

where (ST  S * ST is called the pseudoinverse of the sensitivity matrix S. Note

that ST * S is always a square matrix. For instance, given fifteen image features,

S is a 15 x 3 matrix, ST a 3 x 15 matrix, and ST S a 3 x 3 matrix that can be

inverted..,

17
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B. The Algorithm

1. Sensor Range Extension

The estimation method described in Section 111-B is restricted to an

extremely small range of measurable variations in the object's location. The

higher the required accuracy, the smaller the range. This is because of the

nonlinearity of the transformation function of the image-feature vector with

respect to the locational vector. The smaller the changes, relative to a reference
location, the better will the linear approximation fit the real nonlinear function '

T(P) around the reference point.

The algorithm proposed here for extending the measurable range of an - -

object's location is valid as long as the tangents of T(P) do not change directional

polarity while the object moves beyond the linear region. Therefore, a procedure

consisting of several steps (take a picture, compute feature changes, utilize the

pseudoinverse to compute P'cj, and move by -P'cj--with j denoting the number of

the steps) will cause a grasped object to move toward the prototype location. The

stated condition, i.e., that the tangent outside the linear portion of T(P) will not

change polarity, guarantees that the object will move closer to the reference 4

origin. On the other hand, while the object converges to the linear region of

T(P), the errors of the least-squares estimation become smaller. This is why the , J
foregoing procedure converges such that a grasped object overlaps with the

reference object.

The correction procedure would terminate when Pc coordinates (dx, dy,

dO.) are smaller than the required sensor threshold error. Figure 5 shows the

result converging coordinates x-y to the origin. The experiment was done on an

object that moves in a plane in x, y, 0. coordinates but only x-y was plotted.

Experiments show that, even when one of the three coordinates changes

polarity, the correction procedure does converge. Experiments confirm that the

coordinates are mutually dependent; when two coordinates move closer to the

18
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FIGURE 5 TYPICAL LOCATIONAL TRAJECTORIES OF A ROBOT HAND

origin, the third one does too. The number of iterations depends on the defined

range and the accuracy required.
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2. The Algorithm

The algorithm is illustrated diagrammatically in Figure 6. The diagram .

describes a section of automatic object location, as would be required in automatic

assembly. First the robot grasps a reference object and a hand tip "actpoint"

(actuation point) at the assembly station is defined. Second, the feature model

must be calibrated, and the system trained for a reference object at the

"viewpoint" where the camera sees the object. This involves computing and * 'p..
recording the sensitivity matrix, one column at a time, of feature derivatives with

respect to each locational degree of freedom. Third, the calibrated relation *.; *..-

between features and location is inverted according to the least-squares criterion;

in other words, the pseudoinverse of matrix S is computed. Fourth, the robot.-. ,- .

grasps an object, moves to the "viewpoint," and the feature vector f'=f-fO is

computed. Then the pseudoinverse of the sensitivity matrix multiplies the feature %

vector to provide locational coordinates. Finally, the robot is instructed to move
.

the object by -Pc' toward the reference location, as was defined in the training

procedure..- -

Several iterations of picture-taking, computation of Pc, and moves by -Pc

may be performed until each of the object's coordinates is close enough to the .

reference location to be under the error threshold. When the robot's hand tip is

in this location, the controller computes its transformation DIFF relative to the

reference hand tip location determined during training. The last step is to

instruct the robot. to move to the "actpoint" location that compensates for

misgrasp: i.e., the hand tip is moved to the (Tb) actpoint*DIFF location. (To

compute DIFF, we use a routine called HERE VIEWPOINT:DIFF, which is a part

of VAL-Il, the program language of the robot controller.) Finally, the system is

ready to grasp one more identical object. *%6
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V SYSTEM DESCRIPTION AND DEMONSTRATION

A. System Description

1. Introduction

The subsystem we used for our experimental demonstration is part of a

hierarchical, programmable assembly system. The latter consists of functional

modules, each including a major device (e.g., a robot arm) or a sensor (e.g., a
vision processor), as well as auxiliary devices (e,g.,an end-effector, such as a

gripper). Each module is controlled by an LSI-11 computer, which stores reflex,

bootstrap, and program routines for carrying out that module's functions. These

computers are connected with one another and with the main system computer by

means of a fast 10-MHz Ethernet communications network, using a single-coaxial-

cable bus [Smith and Nitzan (1983)].

Figure 7 uses a block diagram to describe the assembly system; some

modules that we did not use are shown within dashed lines. Our subsystem

included one PUMA robot with its controller, an SRI vision module with a black- f

and-white graphic-display terminal (TEKTRONIX 4014-1), and an oscilloscope as

an x-y image monitor. The real-time system controller is a DEC VAX-11/730, and

the multiuser software-development system is implemented by a VAX-11/750. i

The high-level programming language used is "C"--developed and run on the

4 VAX under the UNIX operating system. The "C" programs operate driver U-

routines that enable the software functions to run on the SRI vision module or the

PUMA controller.
9. % .9.

Figures 8 and 9 show the part of the assembly system used by us. Figure

8 shows the manipulator module, including the PUMA robot and its end-effector,

and the PUMA controller with its module computer mounted under the arm's

supporting stand. The terminal depicted is connected directly to the robot's

23 -- '
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controller and controls the robot by running VAL-I programs. This temporary

connection was used for debugging. The control box on the terminal side is used

for manual control of the robot and for the teaching mode. Figure 8 also shows a

black table beneath the robot's hand that has a grid of holes; the vision module is

mounted under the supporting stand of the grid table. Two of the three lamps we ... ,

used and the TV camera are shown suspended from the ceiling. Figure 0 contains

the terminal that is connected to the VAX-750 and from which the entire system 0

is operated through the Ethernet bus, as well as the graphic-display terminal and "

the oscilloscope that serves as an x-y image monitor.

2. Module Types " "

The module computer contains a processor, network interface cards, .

memory, and input/output interface cards for the analog and digital signals from

and to the auxiliary sensors and devices of a module. The specific modules we

employed are described briefly below.

a. Manipulator Module

The manipulator module consist of a Unimation PUMA 560 robot and end-

effector. The latter consists of a six-axis force/torque sensor mount on the

wrist(not used by us) and a pneumatic two-fingered (flat plates) hand.

The PUMA controller is equipped with a VAL-I program that controls the

arm. The module computer provides a means for controlling the hand, reading

sensors therein as well as in the wrist, and for moving the arm indirectly by

communication with the PUMA controller.

lere are a few examples of VAL-Il functions used by us:

" WHERE (result)--Returns the location of the robot's hand tip.
%C d

" MOVE (location)--Moves to the specific location.

25
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HERE (location variable)-Defines the value of a transformation
to be equal to the robot's current location. In our application, the
"viewpoint" transformation is defined; then HERE
VIEWPOINT:DIFF computes the right-most transformation
DIFF. DIFF defines the current location relative to the
"viewpoint" location in 4 x 4 transformation form.

b. Binary-Vision Module

The binary-vision module includes an SRI vision module [Gleason and Agin

(1979)] with 128 x 128-element solid-state camera (one could attach up to four

cameras), an LSI-I I computer module, and three lamps for high-intensity

illumination. The camera is mounted on the ceiling, from which it sees the

robot's hand-tip. A preprocessor in the SRI vision module divides the camera

video signal into binary (either black or white) data. The LSI-11 computer of the

SRI vision module includes an entire library of vision subroutines. The heart of

image processing in the vision module is the connectivity analysis routine. A

Two of the most important binary vision-module functions used by us are

describ.d as follows:

Picture (BlobCnt) ,-.

Take a picture, perform a connectivity analysis of the image, and return
the number or connected regions (blob) and the blob centroid (BlobCnt)
that is computed by accumulating the first moments of the area of the
blo)lb about, the x and y axes.

GetFea tu re(BlobN, FeatN, Result)

lReturn the value of a lob feature (indicated by the index FeatN) of a
seleted blob (indicated by the index BlobN). Examples of such features
are blob area, perimeter length, and moments.

We have used the capability of the vision module to specify a rectangular

"window" in an image, outside which data are ignored. The purpose of our

"windowing" application is to view the object only partially, ignoring the part

that touches the gripper.

27
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A standard oscilloscope with external x, y, and z inputs is used as an x-y

monitor of the binary-image input to the vision processor. A graphic-display

terminal, a TEKTRONIX 4014-1, is used to display processed images as outlines.

We used a 75-mm, 1:1.4 lens. The distance from camera to viewpoint was about

one meter, and one pixel of a 128 x 128 array was equivalent to about 0.4 mm.

B. Experimental Demonstration

1. Utilizing Precise X-Y-9 Manual Table

Our first experiment was to run the proposed algorithm; instead of the

manipulator module, however, we used a precise x-y-O manual table. The object

was placed on the table, entirely visible to the camera. The table has an error of A_

0.00 1 for translation, and 0.01 0 for rotation.

4J

We trained the system (construction of the sensitivity matrix) for a
translation of Dx = Dy = 0.1 and a rotation of DO3 = 20 The technique was

to subtract from the object's current location the xc, yc, 0 c computed by the

system--in other words, to compute (P)j-(Pc)j+l manually. This procedure was

repeated until it converged to the origin. The accuracy we achieved was 0.0050

(0. 1am) in x , y, and 0.4 in 0, within a range of 30 mm in x, y, and 160 in 9.

The compute-move process was terminated within 4 to 5 iterations.

2. Determining Object Location in Robot Hand

Figure 6 diagrammatically illustrates the sensor algorithm, including the

training procedure, the process of computing location, and the processing of the

correction transformation DIFF. A special software package

implementing that algorithm was written. This section shows a series of pictures

taken of one Lmong many experiments performed, recording the sensor processing

step by step.

28
E-38

El.

Ne %i



We first placed a sample object (workpiece) manually in the robot's hand;

this was by definition the reference grasp (ideal grasp). Figure 10 shows the

location of the robot's hand tip; i.e., where the camera sees the grasped object.

This is where the viewpoint transformation of the hand tip is defined (computed).

Figure I I shows how the robot is moved manually such that the workpiece

touches the edge of the peg; it is at this point that the actpoint transformation is .-

defined.

Figure 12a reveals part of the workpiece at its reference location, viewed

through a "window" as it is displayed on the graphic monitor. Figure 12b shows

four outlines of the workpiece at its training locations. The training translation of

each coordinate Dx and Dy is 3 mm and the rotation DO is 2 ° relative to the

reference location. , .

%

Figure 13 shows how the object is moved manually in a robot's hand to an

unknown location to simulate a misgrasp of an object. Figure 14a shows such a

misgrasp compared with the ideal grasp at a reference location. Figure 14b shows

five image outlines that are four compute-move iterations of an object's locational

convergence process. It indicates clearly how the robot moves until a grasped %<

object is located at the reference location, with the number of iterations ,

dependent on the accuracy required. Figure 15 illustrates the final location of a

grasped object, compared with the reference location. In this specific experiment

the final location error Pc was Pc - (Dx, Dy, DOs) = (0.088mm, -0.7mm,

-0.48rnim). The terminal connected to the robot's controller shows (Figure 16) the

Cartesian coordinates (x,y,z,O,A,T), which coincide with the blob's outlines in

Figure l.1b, in the robot frame. Figure 16 shows the intermediate locations until .

convergence at a hand tip location labeled targ5, the training locations targx,

targy, targO, and the reference location viewpoint.
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When the process to minimize Pc terminates, the correction transformation

DIFF is computed (shown on the terminal of the robot controller diff in Figure .

16). In the experiment the computer instructs the robot to move from arbitrary

location to viewpoint*DIFF location (Viewpoint [IlR/HI, the result shows almost

the same overlapped outlines as in Figure 15. Figure 17 shows the robot holding

an object at the hand tip actpoint*DIFF location (actpoint =-[R/HJ.,. We can I
see clearly here that the edge of the object (workpiece) touches the edge of the

peg just as the trained sample or reference object had done.

The accuracy of the system is limited to that of PUMA, which is 1 mm for

translation and I1 for rotation. Using the precise x-y-O table, we achieved A

accuracy of 0. 1 mm, 0.4 (see Section V-131).
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VI SUMMARY AND FUTURE WORK -

A. Summary
A practical method and an algorithm for computing an object's location in a

robot's hand have been presented. The mmethod converts image features of that

object into an object location vector, doing this on the basis of a least-squares-

error estimation calibrated empirically during a training procedure.

Application of the algorithm was implemented for object location in a plane

by establishing three degrees of freedom--i.e., x-y for translation and 03 for

rotation. That application is practical for a robot with a hand that has two flat

fingers. The method can determine object location even when only a part of the

object is visible to the camera and, moreover, this ability is independent of the

object's shape. it is not like the method of maximal cliques, which can ascertain

the loc.tion of incomplete images, but depends on the kind and number of.: .." "

subblobs that are visible to the camera. Furthermore, the maximal-clique

approach is very expensive in terms of processing time. In contrast, computation

in the method presented herein is very fast because the features are computed

from binary images, and conversion from image features to location vectors

involves only one multiplication of matrices.

The method's ability to determine location of part of an object is used to

separate the object from its gripper. We found that the technique works as long

as at least 40% of the object is visible to the camera. The nonlinearity of the

transfer function restricts the range of measurable locations to 15 mm/8" with

a fairly high accuracy of +0.1 mm/0.4" (experimental results using a precise x-

y-q table). In other words, an error in object grasp can be reduced by a factor of

150 for translation and by a factor of 20 r- rotation. 5 - .
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One of the disadvantages of this algorithm is that it depends on robot

accuracy, which, in the case of PUMA, is limited to I mm/i" (in range of ± 30 a,

mam, ± 15 0 The slow segment in the sensor algorithm is the compute-move

process, which takes around 5 iterations. The movement of the robot is the

slowing factor. In the next section, a technique to reduce the number of iterations 4A

is discussed.

B. Future Work

To improve the accuracy of the least-squares estimation module, one could

consider an algorithm of constrained least-squares estimation. For example, ".. '?

different weights Wi could be assigned to each feature according to the reliability

of each data item. A linearity criterion could be applied: the closer a feature le .-

measurement is to the reference feature fM (linear region), the more reliable are C. ..

the data, and therefore the higher the assigned weight. We could also use feature

standard deviation as a criterion, among other possibilities. Here instead of .

solving the system S * f' P', we have to solve the equation system W * S * f' "

V * P', and the solution for the location vector is: " a..'.

p= [(W*S)T * (W*S)l * (W*S)T'* W*f.

To reduce the number of iterations, which would improve sensor speed, one

could inquire the partial derivative functions of the image features for each

locational coordinate. From these data, one could the construct lookup tables of

feature derivatives relative to locations, i.e., a table for each coordinate. Now, .'  "

instead of using one sensitivity matrix computed at the origin (reference location)

we shall use a variety of sensitivity matrices, each dependent object's location. A
new sensitivity matrix will be constructed specifically from those lookup tables *'.p'.'

before each conversion. Using this approach, we shall probably achieve better air"

linear approximation of the transfer function, mapped onto a wider range of
object locations. We expect to minimize thereby the number of iterations, while .-

simultaneously extending the measurable locational range.
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In the locational application we assume that the shape of an object remains . %%

geometrically constant, that any changes in one of its image blobs are attributable

to corresponding changes in its location. Another application one can look at is

the inspection of indexed objects. In this case, location remains constant, so that

any changes in blob features are due to defects in the shape of the inspected

object. The sensor will detect a geometric mismatch between a prototype and a

similar object.

In the inspection application, the entire object should be visible and the

global features should be independent of both position and orientation. A

subsequent object to be inspected will be moved to the same location, after which

a corresponding feature vector f will be measured and computed. A different ..-..

vector f'=f-fO can then be used to determine whether or not the object is

defective. This technique might be applicable for finding tiny defects. Using the

sensitivity matrix S, we can obtain a deviation vector d = SPi *f' that would

classify an object as defectives rely on pretraining of defectives. t presents

In general, the mathematic model presented here can be used for location

and inspection of an object by processing any kind of data, as long as it presents

well and is sensitive to the geometric shape or location of an object. For example,

phase delay between transmitter and array of receivers of ultrasound waves

reflected from an object, each phase delay measured in a different receiver is a

component of a phase delay vector f. Another example might be to use a 3-D
..

vision system (like the White Scanner); it computes 3-D geometric features and

uses an experimental sensitivity matrix to compute an object's location.

4. .4 ..
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Abstract

When an industrial manipulator is commanded to pick up an object, there is some unknown

error (difference) between the position and orientation (pose) of the object and that of the

manipulator's gripper. In current practice, this error is minimized by using very accurate

but costly machines and part fixtures. For many potential applications, expensive fixturing

will probably have to be reduced-introducing locational uncertainties that must be mini-

mized by intelligent sensing. An approach is presented here for estimating the pose error of

a workpiece in a manipulator's gripper, after the part has been acquired, by sensing wrist

force/torque while the manipulator is moving. In principle, it should be possible to estimate

the error relationship while the manipulator is transferring the part to its destination, so

that the manipulator can correct any errors "on the fly."

1 Introduction

Moving a workpiece from one location to another-whether to place it into a fixture or

a machine or to assemble it with another component-is one of the primary functions of -4

an industrial manipulator. In current industrial implementations, these manipulators are

surrounded by expensive, special-purpose fixtures and use special-purpose grippers that

capture and orient the workpieces with high precision. When the manipulator grasps a

workpiece, the part pose in the gripper is assumed to be known approximately by virtue of

the positioning accuracy of the manipulator, which is supposed to be sufficiently accurate '

for the job. Thus, the workcell is preengineered so that a sensor-less robot can perform

the task-often at the great expense of designing and building special fixturing. This a,..

approach is justified economically for mass production, but for batch manufacturing it will

be economically imperative to reduce or eliminate the use of costly fixtures. With no

fixtures, however, workpiece locations will become more variable, and when a manipulator

grasps a workpiece, the presumed grasp relation and the actual one may be significantly

different. Future robotic workcells therefore must accommodate the locational variation

efficiently through the use of sensing and intelligence.
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If we can determine the pose of a workpiece in a manipulator's gripper, we can estimate

the error in the grasp and direct the manipulator to modify its motions to compensate for

that error. It is advantageous to determine the pose of the workpiece while it is being held

rather than before it is grasped, because without special-purpose fingers and an accurate

robot, the act of grasping the workpiece may introduce significant error. Prior work for

determining the pose of a part in the hand has been based on vision[1,2], ultrasonics[3], and -.

sparse range or tactile information sensing[4. In general, sensors to estimate pose error

should be mounted on the robot hand; otherwise, it may be necessary to move the held ..

workpiece to a sensing station.

In this paper we present a novel method for determining the pose of a part in a robot

hand by using a wrist-mounted force/torque sensor while the manipulator is transfering the

part to its destination. Using this method, it should be possible to estimate the grasp error
and modify the final manipulator motions to position and orient the workpiece correctly.

2 Overview of Method

In Section 2.1 we describe the coordinate frames used in determining the pose of the object

to be grasped. In Section 2.2 we estimate the position (x, V, z) of the center of mass of the

grasped object with respect to a coordinate frame of the gripper. This estimation is based

on the fact that in an inertial reference frame the torque of a force F about a given point ,

is given by r x F, where r is the vector from the given point to the point of application of"br-

F. In simple terms, if an object is positioned so that its center of mass is directly below the

support point, the torque about that point is 0. The torque increases when the horizontal

distance is increased. A force/torque sensor, mounted with a known orientation on the

manipulator's wrist, will supply the information used in estimating the position, which can

then be compared to the forces and torques with the object in the desired grasp pose. .-

In the second step of the procedure (Section 2.3), we are interested in estimating the

orientation error of the held object with respect to the desired orientation in the coordinate

frame of the gripper that holds it. From the conservation law of angular momentum and

Newton's second law in an inertial reference frame, the torque about a given point Is given

2
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by lJ , where I is the inertia tensor and a is the angular acceleration about that point.

Force/torque sensory information is gathered while the manipulator is moving with a known

angular acceleration about that point-again, possibly during the object acquisition or

transferral sequence. From the above, the inertia tensor, I, of the object in its actual grasp

position is computed.

Given the inertia tensor, I, in the desired orientation (e.g., from a CAD data base) and

the computed inertia tensor r, the relative orientation, A, can then be computed from the ..

relation r - AIAT , where A is a 3 x 3 rotation matrix. Because the above relation is

nonlinear, we have selected the Newton-Raphson iteration method to compute the elements

of A.

2.1 Coordinate Frames '

In order to describe the relationships between the coordinate frames, we first establish some

notation. The relation of one coordinate frame, F2 , with respect to another frame, F, can

be described conveniently by a 4 x 4 homogeneous coordinate transformation matrix [51, -- -'.'

which includes a 3 x 3 upper-left matrix, R, representing the rotation of F2 with respect to %

F, (about F, axes), and a column vector, p, describing the translation of the origin of F2

from the origin of F (along the axes of F1 ). In this paper we denote frame relationships '-.

by specifying the rotation and translation separately, i.e., as (R, p).

The method we use assumes that certain information about the object to be grasped is 4

available from a model data base. We are interested in the mass properties of the object-

its mass, center of mass, and inertia tensor. We assume that the object is rigid and that a _

coordinate Frame, 01, is attached to it with its origin at the center of mass and its z-axis

along the direction of gravity (see Figure 1). In estimating the orientation error, we define

a coordinate Frame, 02, as the frame where the inertia tensor of the object is given. For

simplicity and without losing generality, we assume that the model of the inertia tensor

of the object is given, defined with respect to the object principal axes. The principal

coordinate frame is defined as the frame where the inertia tensor is diagonal. A sensor ,% -4 *'

coordinate Frame, S, is attached to the force and torque sensor. Further, we define a world

3
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coordinate system, W, whose z-axis is parallel to the direction of gravity.

2.2 Estimating the Object Position in the Hand

In the following, we presume that the force/torque sensor mounted on the manipulator's

wrist has already been calibrated to remove the effects of the manipulator's hand mass.

Description of such calibration is commonly provided with the force sensor. Figure 1 shows

the relevant spatial relationships among the force sensor, object, world, and manipulator .

reference frames. For simplicity, we will estimate the object position with respect to the

force sensor frame; the transformation from this frame to the hand frame is assumed to be i
known. -A -

As described previously, the position estimation is based on the fact that in an inertial

reference frame the torque of a force F about a given point is given by r x F, where r if

the vector from the given point to the point of application of F. The position estimation is

done while the manipulator is either at rest or moving at a constant velocity; the forces and

torques acting upon the object are, therefore, due to gravity only, and the real orientation

of the object is not important, so we assign the coordinate 01, which is aligned with the

world coordinate frame W, to the object. Thus, the forces and torques acting upon the _______

object in its coordinate frame 01 are: "

F = O+OJ+(mg)k

T = o1+J+0k, (1)

where m is the object's mass (see Figure 2(a)). The force due to gravity is along the z

axis of the object coordinate frame with origin at the center of mass, and there are no .%

torques about the object axes. Note that, since the axes of the world frame and frame 01

are parallel, the orientation of the force sensor in either frame is R - 1 (see Figure 1). The A

%torques acting on the sensor are given by the standard relation [51 , ,

T = n((F x p) + T)

TS  = o((F x p) + T) (2) ---,.

-f a((F xp) +T),

4 b
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where (n, o, a) are the components of R -1 along the axes of the force-sensor frame

(Zs, Vs, zs). Note from (2) that the measured torques in the sensor frame are defined in e

terms of the known force sensor orientation (n, o, a), the known object mass, m, and the

displacement, p, of the force sensor frame from the object frame. Substituting (1) into (2),

we obtain

TS = ,6..ng)p, + ny(mg)p
'

T = o.(mg)p, +o,(mg)p. (3)

Ts  o,(mg)p, + "(mg)p.

Knowing (n,o,a), m, and the T components, we can solve (3) for p - (pz,py,p). By

aligning the sensor frame and the world coordinates, this solution can be simplified into the

following: .p. '

TS= (mg)py

Ts  = (mg)p, (4)

Ts= 0. .

Solutions for p, and p1 are then easily obtained. To solve for the third displacement, p,, ". .--

the object is rotated, for example, by 90" about the v axis. The new torque equations are,

then

TS=(vg)p.

0
Ts  = (mg)p,,. .

As many different static orientations can be used as desired to overconstrain the results,

whose estimates can then be improved through averaging. Thus, the object's displacement ,

relative to the force sensor has been determined. It can be compared with the presumed

displacement ( p in Figure 1), so that the robot can correct later motions by the computed MIF"

difference.

F-9 
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2.3 Estimating the Object Orientation in the Hand

2.3.1 Method of Computation

In this section we are interested in estimating the orientation of the object held by the

hand, using information from its force/torque sensor. Again, for simplicity, the orientation

will be determined with respect to the force-sensor frame, rather than the gripper frame.

From the conservation law of angular momentum and Newton's second law in an inertial

reference frame, the torque T about a given axis is given by

T =(6)

where I is the inertia tensor with respect to the axis of rotation (see Figure 2(b)) and (D is _

the angular acceleration about that axis. By measuring the torque T about the rotational

axis, and knowing 6, the measured value of I, denoted by r, can be computed from (6).

The value of I in the desired orientation, denoted by I, is derived by using information

stored in the CAD data base. Knowing the values of Id and r, the difference between the

desired orientation and the actual one, represented by rotational error matrix A, can thus

be computed from the relation

r = AJA r . (7)

In the case where the affect of gravity is included and the sensor coordinate frame is

not aligned with the world coordinate frame, i.e., there is an orientational difference, R,

between them, the torque measured by the sensor is

T = I'R-'D + (mg)R 'p. (8)

We now wish to use (8) to solve for r. To simplify this solution, we constrain the z-axis of A
the sensor frame to be parallel to the z-axis of the world frame, i.e., along the gravitational S

field. Under this constraint, R is a unity matrix and (8) is reduced to the following: -

T = r6 + (mg)p. (9)

6
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Substituting w8 =Ga3 =0 and w, = c , by inspection of Figure 2(a) we obtain from (9)T's (W" .) + Y
TY. + (m#)p •

We now use (10) to solve for ;I,:p(and I..)

To solve for the other components of the inertia tensor, the sensor frame is first rotated

by 90 degrees around its z-axis. The old v-axis is now parallel to the world-frame z-axis, and

the values of I',, y ,, and I, are similarly determined. Finally, nd, nd P, components

are evaluated in the same way by additional 90-degree rotation of the sensor frame about

its current y-axis.

Having determined the elements of r and knowing those of 1I, we now use (7) to solve -

for the elements of the rotational error matrix A. Expanding each element Pb in (7), where

k,I = 1,2,3, we obtain .

III amalijIii. (1
=1 l"

One can solve this set of nonlinear equations in ai, by using the Newton-Raphson's iteration

method [6],

fla.) + (a.+, - a.) aa (12)

where an is the value of each of the nine aii elements at the nth iteration, a.+, is the one

at the (n + 1)th iteration, and (%)I is the Jacobian J at the nth iteration. This process

continues until the difference &an = (a.+, - a.) is sufficiently small for all ai, elements.

The rotational error may now be corrected by rotating the arm according to the aij values.

7
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2.3.2 Estimation Accuracy

In order to determine how accurately the estimate will represent the orientation error of

the object, we utilize perturbation analysis techniques 16).

The condition number of a matrix determines how sensitive the solution of the set of

equations is to perturbation. The condition number, K(J), of the Jacobian matrix J from

the last section, is defined as

K(J) = IIJIIIIJ-1 l , (13)

where IJIIt0 and IIJ-*ll , are the norms of J and J- 1 , respectively. From perturbation

theory, we can bound the error in estimating the orientation error, 6(Aa.):

I16(AaJ)lo < 2UK(J)llAa.Jloo, (14)

where U is the resolution of the torque measurement and 11Aa.1'oo = max IAail.

From (14) one can see that if K(J) is large, then a relatively small perturbation in

the measurement will produce a relatively large perturbation in the orientation. In our

simulation, the condition number was not greater than 10.0, which is much smaller than a

typical condition number characterizing an acceptably behaved system (e.g., 400).

8
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3 Discussion of Results

The method that we describe has not yet been tried experimentally with a real manipulator;

however, the computational procedure for determining orientation error of the object has

been simulated using a number of different object models and assuming different orientation

error magnitudes. The sensor measurement error, U, is included in the simulation, and was

taken from the specification of a commercially available force/torque sensor. In this error

analysis, however, ( was assumed to be known exactly.

In a particular simulation run, the following parameters were used: the torque sensor

resolution, U = 0.002 Newton-meters; the (perfectly known) angular acceleration about the

direction of gravity (world z axis), Z = 10.0 meters per second2; and an applied orientation

error about the object z axis, Aa 1 10.0 degrees, with the object presumed to be aligned
,- ,* -. ,

with the world axes.

The resulting simulation converged in less than 4 iterations to the correct solution with

an estimation error of less than 0.1 degree.

,L
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